innovators

Inspiring · Exploring · Transforming

The Innovators: December 4, Seattle

Saving Lives Worldwide: The Animal-Human Health Connection

Wendy C. Brown, M.P.H., Ph.D.
Professor of Immunology
Department of Veterinary Microbiology and Pathology
School for Global Animal Health
College of Veterinary Medicine

Developing Vaccines Against Difficult Pathogens

Outline

- Infectious Disease: human and animal impact
- What effective vaccines should achieve
- Examples of effective vaccines and how they work
 - Immunology 101
 - Example of vaccination against smallpox
- Why vaccines for many diseases have been difficult to develop
- Approaches to tackle the problems
- Examples of our research on vaccine development for anaplasmosis in cattle

Infectious Diseases

- Infection is the leading cause of death in humans worldwide
- Many diseases are preventable by improving sanitation and by vaccination
- In underdeveloped and developing countries, infectious diseases of humans and livestock take a heavy toll on human health and well being

Annual Worldwide Deaths from Mucosal Infections (wно 2002)

Immunobiology, Garland Science, 2008

Parasitic Diseases: Malaria

MALARIA CASES BY COUNTRY

Estimated annual mortality: ~1.3 million people

The Animal-Human Health Connection: Agropastoralism

- East Africa smallholder dairy
 - 2-3 acres
 - 1-2 dairy cows
 - 2 goats
 - Grows all food for family and livestock

Cattle Tick-borne Diseases

- 80% of the world's cattle are at risk for one or more tick-borne diseases
- Global cost is estimated at \$13.9-18.7 billion/year
- Diseases include babesiosis, anaplasmosis, heartwater, and East Coast fever

What Effective Vaccines Should Achieve

- Safety
- Induce protection in high percentage of vaccinated individuals
 - Provide herd immunity
 - Reduces transmission if large % are not infected
- Generate long-lived immunity (memory)
 - One or few immunizations
 - May mimic a naturally acquired immune response that clears the infection
- Cost-effectiveness
 - Affordable in underdeveloped countries
 - Able to be administered in rural areas

Microbes and Pathogens

- Different types of microbes
- Why do some cause disease but not others
- Innate immunity
- Breaching or evading the innate immune response
- Need adaptive immunity to fight and clear infection

Barriers to Infection by Pathogens

Immunobiology, Garland Science, 2008

Pathogen-associated Molecular Patterns (PAMPs) and Adjuvants

- Most pathogens activate the innate immune system through molecules they express
 - Surface lipopolysaccharides (LPS)
 - Bacterial cell wall components
 - Bacterial flagellin
 - Nucleic acids
- Live, attenuated pathogen vaccines have natural adjuvants
- Adjuvants were developed to use with killed vaccine antigens to mimic this ability to stimulate innate immunity

The First Line of Defense—Innate: Activation of Macrophages

Immunobiology, Garland Science, 2008

Modified from Esser et al., Vaccine, 2003

Examples of Diseases for which We Have Successful Vaccines

- Smallpox
- Measles, mumps, rubella (MMR)
- Chickenpox
- Influenza
- Polio
- Diphtheria, tetanus, pertussis (DTP)
- Streptococcus pneumoniae pneumonia
- Haemophilus influenzae meningitis

What Do These Diseases Have in Common?

- Pathogen induces an innate immune response
- Acute infections can be cleared naturally by the host adaptive immune response
- Susceptible to neutralizing or antibody
- Viral infections can be cleared by killer T cells
- Immunization provides long-lasting immunity

Course of an Acute Infection Cleared by the Immune Response

Immunobiology, Garland Science, 2008

Long-term Protective Immunity = Preformed Immune Reactants + Memory

Immunobiology, Garland Science, 2008

History of Smallpox

- Viral infection variola virus
- Present in Africa, Asia, and Europe since at least 400 BCE
- Disease spread along trade routes
- Introduced to the Americas in the 1500s
- Highly contagious viral disease, spread by respiratory route, ~30% mortality rate
- Eradicated by 1980

Immunization Against Smallpox: Variolation

- Deliberate inoculation of dried smallpox scabs into the nose or skin in the 1700s
- Caused a mild form of disease
- Lifelong immunity
- 1-2% mortality rates
- Immunized individuals could still spread the virus

Immunization Against Smallpox Using Cowpox Virus: Vaccination

Inoculate James Phipps, <u>8-yr-old boy</u>

Infect with smallpox

Protected

Edward Jenner, English Physician

Arm of Sarah Nelmes, Dairy Maid, 1796

Immunization Against Smallpox: Vaccinia Virus

- Poxvirus related to cowpox and smallpox
- Attenuated virus—causes mild, unapparent infection in normal individuals
- Live vaccine protects against smallpox

Why Is Vaccinia Virus a Great Vaccine?

- Live, attenuated virus
- Natural adjuvant properties
 - Potent activator of the innate immune system to secrete anti-viral proteins (interferons)
 - Activates through TLR2 to induce a strong inflammatory response
- Very broad response to viral proteins
- Long duration of anti-viral immunity
 Antibody response is stable up to 75 years
 - T cell responses still detectable as well

Long-lived Serum Antibody Levels

Amanna et al., New England Journal of Medicine, 2007

Summary — Pathogens for Which Protective Vaccines Exist

- Pathogens can be naturally cleared by the immune response – do not persist
- Tend to have adjuvant properties
- Induce neutralizing antibody
- Induce long-lasting immunity
 - Memory T cells
 - Memory B cells
 - Long-lived plasma cells

Diseases for Which Vaccines Are Needed

Tuberculosis

• Tuberculosis

- Trypanosomiasis
- Malaria
- Rickettsial diseases
- Diarrheal disease
- Respiratory infections
- HIV/AIDS
- Measles

- Trypanosomiasis
- Babesiosis
- Rickettsial diseases
- Diarrheal disease
- Respiratory infections
- Foot and mouth disease

Rinderpest

Some Reasons Vaccines are so Hard to Develop

Intracellular

- Deactivate the innate defense mechanisms
- Rapid onset of systemic infection before adaptive immunity can work
- Antigenic variation in surface proteins
- Cause persistent infection
- High antigen loads: deletion of effector cells

Anaplasma marginale

- Most prevalent tick-borne pathogen in cattle worldwide
- Obligate intracellular bacterium
- Acute febrile illness with severe anemia; up to 50% mortality
- Antigenic variation in MSPs
- Lifelong persistent infection
- Outer membrane immunization can prevent disease and infection
- Immunodominant surface MSPs are not protective

Selection of Vaccine Antigens Using Immune Effectors from Outer Membrane Vaccinates

- Proteomic: identify proteins that stimulate immune effectors and map to the genome to identify the encoding gene
- Genomic: identify genes predicted to encode outer membrane proteins—test expressed proteins for stimulation of immune effectors from protectively immunized cattle

Anaplasma marginale Genome

- 62 predicted OMPs
- 12 OMPs characterized
- None gave adequate protection

Brayton et al., PNAS, 2005

Hypothesize Subdominant Antigens Are Better Vaccine Candidates

Immunoblot

2-D Gel

>20 new Ags Stimulate Antibody

Lopez et al., Infect. Immun., 2005

High-throughput Gene Expression by IVTT

Probed with AP anti-FLAG antibody

- 1. Clone genes of interest
- 2. Add FLAG epitope to C-terminus of protein
- 3. Express in 96-well plates by IVTT
- 4. Measure protein expression with anti-FLAG antibody

Stimulation of Immune CD4 T Cells with IVTT Proteins

Lopez et al., J. Immunol. Meth., 2008

High-throughput Screening of Antigens Expressed by IVTT

~60 proteins tested

- Selected by genomic annotation as membrane proteins
- Verified 6 known antigens
- Identified 20 new proteins stimulated significant T cell proliferation from OM vaccinates
- Can be accomplished in weeks

Conclusions

- The proteomic approach using immune serum to find new outer membrane protein antigens identified 21 new antigens.
- The genomic approach using protein expression from genes predicted to encode outer membrane proteins also identified ~20 new antigens.
- These methods save time.
- These approaches enable us to begin to develop effective vaccines for very complicated pathogens.
- Saving the life of just one cow per family in many impoverished areas of the world would be a huge benefit for human health.

innovators

Inspiring · Exploring · Transforming