
Developing an Integrated Logistics 
Model for Beetle-killed Biomass

The 2nd Northwest Wood-Based Biofuels + Co-Products Conference, 
May 3-4, 2016, Seattle, WA

Woodam Chung, Hee Han, Nate Anderson



Background

• The ongoing outbreak of the mountain pine beetle has affected over 19 million 
hectares in the United States

• Beetle-killed wood represents a vast, high-density biomass feedstock resource for 
bioenergy and bio-based products

• BANR was launched as a USDA NIFA project to explore the use of beetle-killed and 
other forest biomass as a bioenergy feedstock
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Integrated Logistics Model?
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The 3 Components
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Component 1: Allometric Equations
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Live vs. Dead
?

Component 1: Allometric Equations



7

Component 1: Allometric Equations
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(a) Total aboveground biomass
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(b) Logging Residues
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• The amount of logging residues (top + branch + foliage) is significantly different 
between live and dead trees



Component 2: Harvesting Costs
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Component 2: Harvesting Costs
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Component 2: Harvesting Costs
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Component 2: Harvesting Costs

• Feller-buncher productivity: Standing live > Standing dead > Downed 
• Live/Dead/Down has no effect on skidder, processor, delimber and loader
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Component 2: Harvesting Costs

• Lop & Scatter vs. Whole-tree Harvesting
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Component 2: Harvesting Costs
System Machine Utilization 

(%)

Machine System
Productivity 
(BDT∙SMH -1)

Cost 
($∙BDT-1)

Productivity 
(BDT∙SMH -1)

Cost 
($∙BDT-1)

LS

Feller-buncher 60.0 29.29 4.91

19.70 28.27
Delimber* 65.0 19.70 5.82
Skidder 60.0 25.74 3.53
Loader 65.0 26.31 3.01

WT

Feller-buncher 60.0 29.29 4.91

23.28 23.92
Delimber* 65.0 23.28 4.93
Skidder 60.0 25.07 3.63
Loader 65.0 26.31 3.01

*Calculated for two delimbers : System bottle neck
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Component 3: Logistics Optimization

• What would be the most cost-efficient biomass feedstock logistics for given residue 
pile locations?
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Grinding here?
or

Slash forwarding to where?



Component 3: Logistics Optimization

• Two alternative systems for forest residue recovery operation
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1) In-woods grinding system Grinder cost ↑, Truck cost ↓
Grinder move-in cost

2) Slash forwarding system Grinder cost ↓, Truck cost ↑
No grinder move-in



Concentration Yard

Component 3: Logistics Optimization

 Slash forwarding system
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Node hierarchy on forest roads
- Landing: a location that forest residues could be piled
- Concentration yard: a location that has access to chip vans
- Bioenergy plant: the destination of ground residues for bioenergy production



- Landing: a place that forest residues could be piled
- Concentration yard: a place that has access to chip vans
- Bioenergy plant: the destination of ground residues for bioenergy production
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- Landing: a place that forest residues could be piled
- Concentration yard: a place that has access to chip vans
- Bioenergy plant: the destination of ground residues for bioenergy production
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Component 3: Logistics Optimization

• Mixed Integer Programming (MIP) approach

19



Component 3: Logistics Optimization

• Mixed Integer Programming (MIP) approach
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Conventional Logistics

Bioenergy plant
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Optimized
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Integration – A Case Study

• Study forest (Colorado State Forest, CO)
• Total area: 36,428 acres
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Integration – A Case Study

• Criteria: Lodgepole pine; Slope < 30%; average skidding distance < 2,000 ft
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Integration – A Case Study

• Estimated logging residues 
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Integration – A Case Study

• Cost difference between WT and LS (WT – LS)
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Average cost: $40.1/ BDT 
(-$4.9 ~ $240.2/ BDT) 



Integration – A Case Study

• Optimized Logistics
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 Average cost: 20.5 $∙BDT-1

 Concentration yards: 2
 On-site processing location: 1
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Concluding Remarks

• New allometric equations, new harvesting cost and new logistics 
optimization approach allow estimation of more realistic beetle-kill biomass 
supply and costs – addressing the existing uncertainties and knowledge gaps

• ‘Years since dead’ likely affect harvesting costs, timber product mix and 
therefore project net revenue – will be studied in collaboration with other 
task teams in BANR

• The logistics model will be further integrated with the downstream supply 
chain to incorporate facility locations and end-user products for minimum 
costs and maximum value recovery
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Thank you
Questions?
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