Developing an Integrated Logistics Model for Beetle-killed Biomass

Woodam Chung, Hee Han, Nate Anderson
Background

- The ongoing outbreak of the mountain pine beetle has affected over 19 million hectares in the United States
- Beetle-killed wood represents a vast, high-density biomass feedstock resource for bioenergy and bio-based products
- BANR was launched as a USDA NIFA project to explore the use of beetle-killed and other forest biomass as a bioenergy feedstock
Background

Utilization of Beetle-Kill and Other Forest Management Feedstocks to Sustainably and Economically Diversify our Nations Transportation Fuels Markets

BANR Basics
- Announced Fall of 2013
- 2014 Project Begins
- 5 Years
- 5 States
- $10 million
- 1 of 7 Coordinated Agricultural Projects (CAPS)

Structure/Organization
- Task-Centered Across Multiple States and Institutions
- Project Management and Executive Team
- Independent Project Advisory Team

BANR Governance and Guiding Principles
- Collaborative and Multi-Disciplinary
- Science-based with Practical Applications
- What Communities Should Know, Not What They Should Do

Focus Areas and Tasks
1. Feedstock Supply
2. Harvesting and Processing
3. System Performance, Lifecycle and Financial Analysis
4. Education
5. Extension and Outreach
6. Health and Safety

For More Information on BANR Visit http://banr.colostate.edu/

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, sexual orientation, marital status, familial status, ethnic background, or all or part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.)

For more information, call the USDA Civil Rights Discrimination Complaint Coordinator at 866-632-9992 or visit civilrightswithelders.org.
Integrated Logistics Model?

Recoverable Biomass + Harvesting costs + Cost-effective logistics
The 3 Components

- Biomass Allometric Equations
- Cost Estimating Models
- Logistics Optimization
Component 1: Allometric Equations
Component 1: Allometric Equations

Live vs. Dead?
Component 1: Allometric Equations

- The amount of logging residues (top + branch + foliage) is significantly different between live and dead trees
Component 2: Harvesting Costs
Component 2: Harvesting Costs
Component 2: Harvesting Costs
Component 2: Harvesting Costs

- Feller-buncher productivity: **Standing live > Standing dead > Downed**
- Live/Dead/Down has no effect on skidder, processor, delimber and loader

Figure:

- **Cycle time (sec)**
- **Live only**
- **Dead only**
- **Downed only**
- **Live/Dead**
- **Mixed w/Downed**
Component 2: Harvesting Costs

- Lop & Scatter vs. Whole-tree Harvesting
Component 2: Harvesting Costs

<table>
<thead>
<tr>
<th>System</th>
<th>Machine</th>
<th>Utilization (%)</th>
<th>Productivity (BDT SMH⁻¹)</th>
<th>Cost ($∙BDT⁻¹)</th>
<th>System</th>
<th>Productivity (BDT SMH⁻¹)</th>
<th>Cost ($∙BDT⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS</td>
<td>Feller-buncher</td>
<td>60.0</td>
<td>29.29</td>
<td>4.91</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Delimber*</td>
<td>65.0</td>
<td>19.70</td>
<td>5.82</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Skidder</td>
<td>60.0</td>
<td>25.74</td>
<td>3.53</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Loader</td>
<td>65.0</td>
<td>26.31</td>
<td>3.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT</td>
<td>Feller-buncher</td>
<td>60.0</td>
<td>29.29</td>
<td>4.91</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Delimber*</td>
<td>65.0</td>
<td>23.28</td>
<td>4.93</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Skidder</td>
<td>60.0</td>
<td>25.07</td>
<td>3.63</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Loader</td>
<td>65.0</td>
<td>26.31</td>
<td>3.01</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Calculated for two delimiters

: System bottle neck

*Calculated for two delimiters

: System bottle neck

![Graph showing system cost vs. average skidding distance](image-url)
Component 3: Logistics Optimization

• What would be the most cost-efficient biomass feedstock logistics for given residue pile locations?

Grinding here? or Slash forwarding to where?
Component 3: Logistics Optimization

- Two alternative systems for forest residue recovery operation

1) **In-woods grinding system**

 - **Grinder cost ↑, Truck cost ↓**
 - **Grinder move-in cost**

2) **Slash forwarding system**

 - **Grinder cost ↓, Truck cost ↑**
 - **No grinder move-in**
Component 3: Logistics Optimization

- Slash forwarding system

Node hierarchy on forest roads
- **Landing**: a location that forest residues could be piled
- **Concentration yard**: a location that has access to chip vans
- **Bioenergy plant**: the destination of ground residues for bioenergy production
Component 3: Logistics Optimization

- **In-woods grinding system**

Node hierarchy on forest roads
- **Landing**: a place that forest residues could be piled
- **Concentration yard**: a place that has access to chip vans
- **Bioenergy plant**: the destination of ground residues for bioenergy production
Component 3: Logistics Optimization

- **In-woods grinding system**

Node hierarchy on forest roads
- **Landing**: a place that forest residues could be piled
- **Concentration yard**: a place that has access to chip vans
- **Bioenergy plant**: the destination of ground residues for bioenergy production
Component 3: Logistics Optimization

- Mixed Integer Programming (MIP) approach

Objective function

\[
\min Z = \sum_{ij \in L} \sum_{s \in S} \sum_{p \in P} \sum_{t \in T} (cp_{ij}^{sp} + ct_{ij}^{tp}) \cdot X_{ij}^{tp} + \sum_{kl \in N} cm_{kl} \cdot Y_{kl} + \sum_{u \in N} cc_{u} \cdot D_{u}
\]

- \(cp_{ij}^{sp} \): variable processing cost of system \(s \) at location \(i \) (\$/BDT)
- \(ct_{ij}^{tp} \): variable transportation cost of transporting material type \(p \) with truck \(t \) on link \(ij \) (\$/BDT)
- \(cm_{kl} \): move-in cost of grinder mobilization on road segment \(kl \) ($)
- \(cc_{u} \): construction cost for concentration yard or landing at location \(u \) ($)
- \(L \): set of links in the network
- \(N \): set of nodes
- \(P \): set of material types (slash or ground residue)
- \(S \): set of processing equipment system (slash forwarding or in-woods grinding)
- \(T \): set of truck options
Component 3: Logistics Optimization

- Mixed Integer Programming (MIP) approach

Constraints

\[\sum_{j \in N} x_{ij}^{tp} - \sum_{j \in N} x_{ji}^{tp} = \begin{cases} z_i^p & i \in Z \\ 0 & i \in W \end{cases} \text{ for } \forall j \in N, \forall p \in P, \forall t \in T \]

\[M \cdot D_u \geq \sum_{u \in N} x_{uw}^{tp} \text{ for } \forall v \in C \cup K, \forall p \in P_{grindings}, \forall t \in T \]

\[\sum_{kl \in R_{uw}} y_{kl} \geq n_{uw} \cdot D_u \text{ for } \forall u \in N, \forall v \in K \]

\[\sum_{j \in K} x_{ij}^{tp} \geq r_{min} \text{ for } \forall i \in N, \forall p \in P, \forall t \in T \]

\[D_u \cdot y_{kl} = \{0, 1\} \text{ for } \forall k, l, u \in N \]

\[x_{ij}^{tp} \geq 0 \text{ for } \forall i, j \in L, \forall p \in P, \forall t \in T \]

\[C : \text{ set of concentration yards} \]

\[K : \text{ set of bioenergy facilities} \]
Conventional Logistics

- **Total cost:** $240,711
- **Unit cost:** $43.4 / BDT
- **Con. yard locations:** 0
- **On-site processing locations:** 52

Key Details
- **Grinder’s location**
- **Flow of ground residues**

Map Details
- **Forest stands**
- **Road speed**
 - 60 mph
 - 40 mph
 - 15 mph

Locations
- **Bioenergy plant**
- **Grinder’s location**
- **Flow of ground residues**
- **Road speed**
 - 60 mph
 - 40 mph
 - 15 mph
- Total cost: $162,223
- Unit cost: $29.2/BDT
- Con. yard locations: 2
- On-site processing locations: 2

- Grinder’s location
- Flow of slash residues
- Flow of ground residues

Bioenergy plant

Optimized

- 2,142 BDT
- 1,269 BDT
- 1,420 BDT
- 2,689 BDT
- 3,506 BDT
- 817 BDT

Graph showing:
- Unit cost ($/BDT)
- Optimized: 29.2
- Conventional: 43.4
- Decrease: (32.7%)
Integration – A Case Study

• Study forest (Colorado State Forest, CO)
• Total area: 36,428 acres
Integration – A Case Study

• Criteria: Lodgepole pine; Slope < 30%; average skidding distance < 2,000 ft
Integration – A Case Study

- Estimated logging residues
Integration – A Case Study

- Cost difference between WT and LS (WT – LS)

Average cost: $40.1/ BDT
(-$4.9 ~ $240.2/ BDT)
Integration – A Case Study

- Optimized Logistics

- Average cost: **20.5 $-BDT**
- Concentration yards: 2
- On-site processing location: 1

Flow of slash residues

Flow of ground residues

Grinder's location

Node
- Slash piles
- CY's
- Bioplant

Road speed (mph)
- 15
- 55
- Lodgepole pine

Node
- 14,336 BDT
- 16,236 BDT
- 6,742 BDT
- 1,900 BDT
- 1,900 BDT
- 6,742 BDT

Conventional

Optimized

(25.2%)
Concluding Remarks

• New allometric equations, new harvesting cost and new logistics optimization approach allow estimation of more realistic beetle-kill biomass supply and costs – addressing the existing uncertainties and knowledge gaps

• ‘Years since dead’ likely affect harvesting costs, timber product mix and therefore project net revenue – will be studied in collaboration with other task teams in BANR

• The logistics model will be further integrated with the downstream supply chain to incorporate facility locations and end-user products for minimum costs and maximum value recovery
Thank you
Questions?

Acknowledgement: This project was supported by the Agriculture and Food Research Initiative Competitive Grant no. 2013-68005-21298 from the USDA National Institute of Food and Agriculture.