Analyzing Changes in Lignin Chemistry Due to Biofuel Production Processes

S. Carter FoxWeyerhaeuser

NARA Supply Chain

Source of Lignin in a Biorefinery

Image from: Alonso, D. M.; Wettstein, S. G.; Dumesic, J. A. Chem. Soc. Rev. 2012, 41, 8075-8098.

The Need for Co-Products

Few Commercial Uses for Lignin

- Annual lignin production:
 - 40 to 50 million metric tons?

- Annual commercial lignin consumption:
 - $-\approx 1.5$ million metric tons

What is the problem? Why isn't lignin more widely used?

 Are the chances for success in lignin utilization better today?

Lignin Complexity

Lignin is a complex molecule to begin with.

A

Lignin Isolation Affects its Structure and Purity

Commercial

- Kraft pulping
- Sulfite pulping

Non-commercial

- Organosolve pulping
- Milled wood
- Ionic liquid pretreatment
- Mild acid hydrolysis

Photo credit: JBEI

Drivers for Success

Near Term

- Cleaner commercial lignins
- Characterization methods are more powerful
- New market opportunities

Long Term

- Better methods to break specific lignin bonds
- Advances in biomass fractionation
- Ability to manipulate lignin biosynthesis

Many Possibilities from Lignin

NARA Supply Chain

NARA Co-Product Streams

Mild Bisulfite Pretreatment (MBS)

Process development by Johnway Gao and Dwight Anderson at Catchlight Energy and J.Y. Zhu at the Forest Products Laboratory

Refs: Zhang, C., et al. *BioEnergy Research.* **2012**, *5*, 978-988. Gao, J., et al. *Biotechnology for Biofuels* **2013**, *6*, 10.

Wet Oxidation Pretreatment

Process development by Dr. Brigitte Ahring at Washington State University's Bioproducts, Sciences & Engineering Laboratory

Ref: Rana, D., et al. Bioresour. Technol. 2012, 121, 61-67.

Composition of Fermentation Residual Solids (FRS)

Sample	Total Klason Lignin	Total Polysaccharide	Ash	Sulfur
Feedstock	34.9%	54.4%	0.2%	0.0%
MBS FRS as rec'd	70.4%	18.9%	8.9%	2.4%
MBS FRS washed	69.4%	23.9%	4.1%	1.8%
Wet Ox FRS as rec'd	53.0%	43.9%	2.0%	0.1%
Wet Ox FRS washed	53.4%	47.3%	0.5%	0.0%

% oven dry

How to Determine FRS Lignin Chemistry?

- Saccharification and fermentation residual solids are insoluble in all attempted solvents.
- Need to extract high purity, unmodified lignin from SRS and FRS samples.
- Can we simply extract lignin using dioxane/water mixture, similar to milled wood lignin?
- Not really.

Sample	Yield
MBS SRS	2.8%
Wet Ox SRS	8.3%

Ball Milling Increases Extracted Lignin Yield

Enzymatic Mild Acidolysis Lignin (EMAL)

Procedure developed by the Argyropoulos research group at

NC State. (Ref: Guerra, A., et al. *J. Agric. Food. Chem.* **2006**, 54, 5939-5947.)

Ball Milling

21 days

Enzymatic Hydrolysis

48 hours

Solvent Extraction
2 hours

Lignin Isolation Yields

Sample	Enzymatic Hydrolysis Yield	Lignin Extraction Yield	Extracted Lignin Purity
Forest Residuals	42.8%	52.4%	81.0%
Mild Bisulfite FRS	64.7%	52.5%	95.4%
Wet Oxidation FRS	86.4%	44.9%	94.2%

Lignosulfonate Isolation Procedure

Elemental Analysis of Isolated Lignins

Sample	Sulfur	Carbon	Hydrogen	Nitrogen	Oxygen*
Forest Residual Lignin	0.032	61.0	6.0	0.07	32.9
Wet Oxidation Lignin	0.096	64.9	5.3	0.96	28.7
Mild Bisulfite Lignin	1.13	63.3	5.7	1.01	28.9
MBS Lignosulfonic acid	8.10	52.1	4.8	0.36	34.7

^{*} Oxygen determined by difference All values % oven dry

³¹P NMR Analysis of EMALs

Quant. ³¹P NMR spectrum of forest harvest residual EMAL

Hydroxyl Group Comparison

Sample	Aliphatic OH	Aromatic OH	C-5 Substituted OH	СООН
Forest Residuals Lignin	4.31	1.11	1.45	0.03
Wet Oxidation Lignin	1.93	2.86	1.32	0.21
Mild Bisulfite Lignin	1.38	2.71	1.66	0.22
MBS Lignosulfonic acid	2.42	3.96	1.73	0.10

Molecular Weight Analysis

Sample	Mn	Mw	PDI
Forest Residuals Lignin	26.8 ±	54.6	1.94
Wet Oxidation Lignin	34.1 ±	45.7	1.34
Mild Bisulfite Lignin	47.5	56.4	1.19
MBS Lignosulfonic acid	4.7	28.0	5.92

Summary

- Developing value-added products from lignin-rich process residuals will be critical to large scale biorefinery commercial success.
- Different pretreatment technologies produce residuals with different properties.
- The residues from Mild Bisulfite and Wet Oxidation pretreatments contain a lot more than just lignin.
- Processes to upgrade lignin must be robust enough to handle significant impurity content and variability in the feedstock.

Summary

 High purity lignin was isolated from the Mild Bisulfite and Wet Oxidation residuals and characterized with respect to elemental content, hydroxyl group content, and molecular weight

Acknowledgements

- Colleagues Dave Fish and Ian Dallmeyer
- NARA Summer undergraduate intern Steve Cline

 NARA is primarily supported by an Agriculture and Food Research Initiative Competitive Grant no. 2011-68005-30416 from the USDA National Institute of Food and Agriculture.

