

Borregaard Background Project Summary

Jerry Gargulak Business Development Borregaard LignoTech

An international business with global customers

Production facilities and sales offices in 17 countries provide a global platform

BAS is an international biorefinery company headquartered in Norway and the global leader in lignin based bio-chemicals.

Lignin based bio-chemicals are replacing oil based chemicals in a broad range of application areas.

BAS is the largest producer of ethanol from wood. 6 mill g/y.

Annual sales \$750MM USD

Borregaard then and now

Karl August Kellner

- Competitive edge in 1889
 - cheap timber
 - cheap energy
 - cheap labor
- Austrian technology
- British capital

- High cost
 - raw materials
 - energy
 - labor
- Competitive edge in 2012
 - technology
 - market
 - innovation pipeline

From paper mill to biorefinery

Innovation Management

R&D center in Norway – key figures and core competence

Number of employees	80	Organic chemistry	13
Number of MSc	12	Wood chemistry	9
Number of PhD	28	Biopolymer chemistry	6
Pilot/demo plant personnel	20	Physical chemistry	3
Average experience (years)	10	Analytical chemistry Microbiology	2 4
Female employees (%)	40	Process technology	3
Average age	41		

- Flexible, experienced and competent
- Unique and strong competence platform
- Attractive working environment
- Specialists and generalists
- Benefitting from each others' core competences

Lignin Chemicals – the driver for BALITM

- Largest supplier with a global footprint
- Unique technical and application expertise
- A sustainable and versatile product portfolio
- Large, diverse and stable customer base
- Strong R&D in new applications
 - Technical staff approximately 100

Q3'12

Q2'12

Q1'12

Q4'12

Q1'13

Q2'13

Q3'13

Borregaard value chains

What is dissolved during pretreatment?

BALITM: Possible 1st Plant Pathway

BALITM: A biorefinery technology platform

BALI™ produces clean hydrolysates

- BALI™ hydrolysates are easily fermentable to ethanol, indicating the absence of fermentation inhibitors
- Company A (chemical process):
 - "Borregaard hydrolysates were converted very efficiently"
- Company B (fermentation process):
 - "Results for conversion of the acid and neutral hydrolysates are the best we have ever observed"

Pretreated bagasse with 75% water

The solution: continuous enzymatic hydrolysis

Significantly reduced viscosity during continuous operation

Viscosity measurements

Viscosities on a Physica MCR 101 rheometer equipped with a cup with a stirrer (FL 100/6W) operated at 50 °C.

Scaling up the BALI concept - Biorefinery Demo

- Demo plant commissioned January 2013
 - 23 MM USD investment (total Capex)
 - 10 MM USD grant from Innovation Norway
- Minimum size commercially available equipment
- 450 mt biomass processed
 - Softwood, hardwood and sugar cane bagasse
 - Continuous operations
- Demonstration mission
 - Process demonstration and optimisation
 - Product qualification

BALI Demo - Pretreatment step

Biomass feedstock

Pretreatment

Cellulose

Lignin raw material water soluble

BALI Demo: Enzymatic hydrolysis step

Enzymatic hydrolysis

Super E10 FuelSave

Biochemicals

The BALI project BALI opportunities

Feedstock flexible process

- Low cost biomass options are enabled
- Lignin performance and value determined by choice of feedstock

Significant revenues from both lignin and cellulosic sugars

 Only known 2nd generation bioethanol process with commercially viable lignin raw materials

Moderate Capex

Significantly lower investment cost compared to traditional sulphite pulp mills

Enables lignin logistics optimization

World wide lignin distribution costs may be reduced

BALI - IP status

The BALI process has three layers of IP protection:

- BALI process patents
 - Main patent granted in Europe, pending in USA
 - Enzymatic hydrolysis of cellulose (pending)
- Multiple lignin application patents
- Trade secrets
 - Unique application and market knowledge

Development of a business model for the first full scale BALI plant

Products

Lignin and bioethanol

Biomass

Softwood or bagasse

Partner selection criteria

- Local presence
- Strategic fit strategic interest in bioethanol or cellulosic sugars
- Willingness to co-invest
- Available brownfield assets
- Process integration opportunities

Regional selection criteria

- Price and long term availability of biomass
- Lignin market
- Bioethanol market
- Outbound logistics
- Acceptable business environment

Global presence and potential areas for the first full scale plant

Partner discussions under secrecy agreements are ongoing inn all 3 regions GO/NO GO decision and region selection late 2014

Production startup approx. 24 months after final investment decision

Example: Softwood based BALI plant

Capex elements

- Scale assumptions
 - 300,000 dry mt softwood
 - 140-150,000 dry mt lignin
 - 25-29 mill. gallons ethanol
- Investment estimate USD 160-320 MM
 - Quotes from key suppliers
 - Basic engineering
 - Trade knowledge of process
 - Potential cost reduction through site repurposing
 - Borregaard share of Capex dependent on partnership/JV structure

Conclusions

- Borregaard today
 - highly integrated wood based biorefinery
- BALI™ process
 - multifeedstock technology
 - water soluble lignin ensures good fractionation
 - continuous enzymatic hydrolysis with conventional equipment
 - demo plant running
 - profitable process

Acknowledgements

Novozymes and DuPont Genencor for generous enzyme gifts

EuroBioRef

The research leading to these results has received funding (3.9 MUSD) from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 241718 EuroBioRef

Biomass2Products

3.3 MUSD from the Norwegian Research Council (2009 – 2012)

BALI pilot plant

10 MUSD for construction of pilot plant received from Innovation Norway

