Renewable feedstocks supplying the petrochemical industry

NARA, Seattle, May 3, 2016
Ed Rode, Arun Agarwal, Narasi Sridhar
Contents

- Why is CO2 utilization important?
- What is DNV GL doing about it?
- What are the barriers?
- Ways to overcome the barriers – current status
- Going forward
We are a global classification, certification, technical assurance and advisory company

OUR PURPOSE

TO SAFEGUARD LIFE, PROPERTY AND THE ENVIRONMENT
Only by connecting the details can we impact the bigger picture

- We classify, certify, verify and test against regulatory requirements, rules, standards and recommended practices
- We develop new rules, standards and recommended practices
- We qualify new technologies and operational concepts
- We give expert advice to enhance sustainable business performance
Global reach – local competence

150 years
350 offices
100 countries
15,000 employees
Why is CO₂ utilization important?

- The world will continue to rely mainly on fossil fuels and fossil-fuel based chemicals
- CCS is unlikely to meet its targets at least for the foreseeable future, but there could be large concentrations of CO₂ available
- Significant increases in renewable energy will require mechanisms to store excess electrical energy
- CO₂ utilization is capable of unlocking the vast innovation potential of society

From Fossil to CO₂ Economy
There are many ways to utilize CO₂

Input Energy & Chemicals
- Solar
- Wind
- Geothermal
- Tidal
- Hydro
- Waste heat
- Nuclear
- Water
- Hydrogen
- Other chemicals

Conversion/Recycling
- Chemical
- Biochemical
- Photochemical
- Electrochemical

Non-conversion use
- Solvent
- Working fluid
- Heat transfer

Energy Storage
- Renewable fuels
- Syngas, methane, etc.
- Formic acid, methanol, DME

Feedstock
- Carboxylates & lactones
- Carbamates
- Urea, isocyanates
- Inorganic & organic carbonates
- Biodegradable polymers

Enhanced oil recovery (EOR)
- Super critical CO₂
- Geothermal fluid
- Beverages & microcapsules

Non-conversion use
- Waste heat conversion
- Syngas, methane, etc.
Advantages of Electrochemical Route over Other Processes

- Different Products: Formic Acid, Formate Salt, CO, Methanol, Ethylene, Methane
- Scalable & Intermittent
- Portable
- Alternate Fuels
- Flexible Power Sources
- Chemical Feedstock
- Energy Storage

CO₂ Utilization

- Wind Solar
- Waste Grid
- 25°C 14.420

DNV GL © 2013
Energy for CO₂ conversion can be modest

<table>
<thead>
<tr>
<th>Product</th>
<th>Gibbs Free energy, kJ/mol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water to hydrogen</td>
<td>237</td>
</tr>
<tr>
<td>Iron ore to iron</td>
<td>740</td>
</tr>
<tr>
<td>Silica to silicon</td>
<td>798</td>
</tr>
</tbody>
</table>
CO₂ utilization provides value added products

Total CO₂ produced worldwide = 30 GigaTon/yr

- >0.4 Gt/y potential
 - U.S. produces about 40 Mt/y ethanol

- >0.3 Gt/y potential
 - Total urea use of CO₂: 112 Mt/y

- >0.4 Gt/y potential

- Potential for 1.6 Gt/y. Currently, one plant operates at 700 t/y

> 1000 Gt total capacity possible; 12 plants: 25 Mt/y in 2013

Total CO₂ produced worldwide = 30 GigaTon/yr
Why Formic Acid? Highest energy eff. & potential profitability

Formic acid (and CO) had highest selectivity and lowest energy consumption.

Market price of Formic acid offered most favourable price gap.
Electrochemical Reduction of Carbon Dioxide to Formic Acid (ECFORM)

Cathode Reactions
- \(\text{CO}_2(aq) + H^+ + 2e^- \rightarrow \text{HCOO}^- (aq) \)
- \(\text{CO}_2(aq) + 2H^+ + 2e^- \rightarrow \text{CO}(g) \)
- \(+H_2O \ 2H^+ + 2e^- \rightarrow H_2(g) \)

Anode Reaction
- \(4\text{OH}^- \rightarrow 2H_2O + O_2 + 4e^- \) (alk.)
- \(2H_2O \rightarrow 4H^+ + O_2 + 4e^- \) (acidic)
DNV GL Efforts in CO₂ Utilization

2008
- Lab studies
 - Cu catalyst, CH₄, C₂H₄

2009
- Small reactor studies
 - Sn catalyst, HCOOH

2010
- Demo reactor, 1 Kg/d
 - Self powered trailer

2011
- Improve process chemistry, catalyst life

2012
- Establish external partnerships to demonstrate value chains
 - Interactions with other technology developers

2013
- Value chain analyses
 - Berkeley workshop
 - Supported other networks

2014
2015

2008-2015
- Start of larger internal project
- Focus on formic acid
- Other conversion processes
- Energy analyses

Position paper on CO₂ utilization
Barriers for adoption – CO₂ Utilization

Technology Barriers
- High energy and chemical consumption
- Cost and energy requirements of CO₂ capture
- Long-term performance
- Carbon balance

Financial Barriers
- Competition with fossil fuels and chemicals
- Market saturation due to high CO₂ volumes
- Distributed production reducing scale advantage
- Long time horizon for return on investment

Policy Barriers
- Lack of sufficient carbon incentive
- Lack of subsidies, loans, and credits
- Lack of an industry voice
- Lack of inclusion of novel CO₂ utilization pathways in international policies
Overcoming Technology barriers

- Reduce activation energies through novel catalysts, chemistry, and biology
 - Energy and chemical inputs must be balanced
- Single technologies won’t be sufficient – leverage existing infrastructure and technologies
- Long-term demonstration – test centers
- Novel capture technologies
 - Traditional absorption-based capture too big and expensive
- The use of renewable power, energy harvesting will improve carbon balance and economics – LCA analysis
- Standards & guidelines
ECFORM
Novel Electrodes to Increase current density to reduce CAPEX

- **Current (rate of rxn)** directly influences the CAPEX (no. of reactors)

- **Selectivity for formate reaction** (Faradaic Efficiency) = 70 – 90%

- **Stability of current and FE over time** is key

<table>
<thead>
<tr>
<th>Catalyst - Electrode Substrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 solid Sn only</td>
</tr>
<tr>
<td>2 Sn - CFP</td>
</tr>
<tr>
<td>3 Nano Sn - CFP</td>
</tr>
</tbody>
</table>

![Bar Chart]

Catalyst – Electrode Type

- **current, mA/cm²**
- **% product selectivity**
- **stability, days**
ECFORM
Stable Performance – High Current density and formate selectivity

Nano-tin catalyst

Setup

Current density, mA/cm²

% Formate Product Selectivity

Time, days

3x reduction in reactors achieved, hence lower CAPEX
Technical Targets Achieved, Technology is ‘ready’ for scale-up

- High Current Density
 ~ 150 mA/cm²

- Long Electrode Life
 (1 – 2 years)

- High Catalyst Selectivity
 (FE > 75%)

- Low Energy Consumption
 (~ 5.5 MWh/ton)

- Low Chemical Consumption

Reduce corrosivity of chemicals

DNVGL has de-risked by tech. development & optimization.

Patents: 2 issued, 3 filed
Overcoming financial barriers

Financial Barriers

- Competition with fossil fuels and chemicals
- Market saturation due to high CO₂ volumes
- Distributed production reducing scale advantage
- Long time horizon for return on investment

- Establish niche markets, then expand
 - Government funding is essential to support long-term development
 - ARPA-e REFUELS project
 - Prize schemes may bring novel solutions
 - CCEMC
 - X-Prize
- Government support is still essential
- Intergovernmental collaborations
- Standards and guidelines can reduce financial risks
The Chlor Alkali Process – as a model for scale-up

- Three electrochemical processes (numbers from J. Appl. Elect., 2008)
 - Mercury (being phased out) – 3.1 to 3.4 MWh/t Cl₂
 - Diaphragm (asbestos and non-asbestos) – 3.2 to 3.8 MWh/t Cl₂
 - Membrane - 2.4 to 2.9 MWh/t Cl₂

- Long history
 - Over 100 years old
 - Energy reduction innovations occur even today (e.g., Oxygen depolarization cathodes)
 - Initial concept of ODC in 1950, but developn
Technology Advances = Reduce Energy/Increase Efficiency

NAFION® Cation Ion Exchange Membrane Employed

Mixed Metal Oxide Based Dimensionally Stable Anodes – long operating life

UHDE: Total supported: 20 MMtpy

Largest: 1 MMtpy

Optimized Single Cells

Modular – Skid Mounted Stacks of Single Cells

Operating data

<table>
<thead>
<tr>
<th>Current density</th>
<th>up to 7 kA/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power consumption</td>
<td>see graph</td>
</tr>
<tr>
<td>Cell temperature</td>
<td>88-90 °C</td>
</tr>
</tbody>
</table>

Service life

- anode coating: > 8 years
- cathode coating: 8 years
- membranes: > 4 years
- gaskets: > 4 years
- compartments: > 20 years
- Active area per element: 2.72 m²
Combined Electrochemical and Thermochemical routes

Net reaction: \(\text{CO}_2 + \text{CH}_4 + \text{H}_2\text{O} \rightarrow \text{CH}_3\text{OH} + \text{HCOOH} \)
New Niche Markets: Electro-fuel Pathway

- Greater energy efficiency (15-30%) vs. biofuel (3-8%) pathway
- Production de-coupled from the sun
- Land-use minimized / no limitation with geography
- No competition with food (corn, sugar)
- Flexibility in end fuel – butanol or diesel (depending on organism)
- Significant net reduction in CO₂ emission

Renewable power → CO₂ source → Saline/waste water → Electrochemical process → Bio-Engineered Bacteria

Product Eg. Formate/Formic Acid → Fuels

Product Eg. Formate/Formic Acid → Chemicals
Formic Acid As Feedstock

Formamide Synthesis

\[\text{HCONH}_2 + \text{C}_2\text{H}_5\text{OH} + \text{NH}_3 \rightarrow \text{HCOONH}_4 + \text{R'}\text{OH} \]

Methanol synthesis

\[2 \text{CH}_3\text{OH} + 2 \text{H}_2 \rightarrow \text{HCOOCH}_3 + \text{CH}_3\text{OH} + \text{R'}\text{OH} \]

Increasing Alcohol Carbon length

\[\text{R'}\text{C}-\text{COOH} + \text{C}_2\text{H}_5\text{OH} \rightarrow \text{R'}\text{C}-\text{COOR'} + \text{CO}_2 + \text{H}_2\text{O} + 2 \text{e}^- \]

Acetate Synthesis via esterification

\[\text{R'}\text{COOR'} + \text{H}_2 \rightarrow \text{R'}\text{COOH} + \text{R'}\text{OH} \]

Larger Carboxylic Acids

\[\text{R'}\text{COOH} \rightarrow \text{R'}\text{COOH} \]

Isomerization

\[\text{HCOOH} \rightarrow \text{R'}\text{COOH} \]

Carboxylic Acids

\[\text{HCOOH} \rightarrow \text{HCOOCH}_3 + 2 \text{H}_2 \]

Methyl formate
Renewable Feedstock to Basic Building Blocks

Renewable feedstocks

- CO₂
- Sugars
- Biomass
- Waste streams

Simple Molecules

- HCOOH
- Methyl Formate
- Methanol
- Alkyl Formate
- Alkali Formate
- Carboxylic Acid
- Formaldehyde
- Glycols
Large volume markets are Accessible

- Biomass → Sugars → HCOOH → CO₂

- Biodiesel
 - Glycerol → Formaldehyde
 - Ethylene Glycol → Ethylene Glycol
 - Propylene Glycol
 - Carboxylic Acid
 - Methanol
- Alkali Formate
- Methyl Formate
- Alkyl Formate
- ROH H₂
- CH₃OH H₂
- MOH
Overcoming policy barriers

- **Policy Barriers**

 - Consistent policy support is essential
 - Pew report: 74 to 96% drop in wind energy market when production tax credits expired
 - Improved communication to policy makers
 - Public polls on CCS show greater support to utilization
 - Inclusion in renewable fuels standards
 - An industry voice is needed to convince and hold policymakers
 - Influence IPCC and other intergovernmental bodies
 - Iowa Tax credit for bio-based Chemicals
 - ‘Skyfill’ – create a level playing field for alternative feedstocks

- Lack of sufficient carbon incentive
- Lack of subsidies, loans, and credits
- Lack of an industry voice
- Lack of inclusion of novel CO₂ utilization pathways in international policies
"I know you **CCU and biomass feedstock advocates** are taking it in the teeth out there. But the first guy through the wall, he always gets bloodied. Always. **This is Renewables are** threatening not just a way of doing business, but in their minds is threatening the game—**petrochemical establishment**. But what's really on their minds is that it is threatening their livelihood, threatening their jobs, threatening the **foundation of the chemicals industry** way they do things.

"And every time that happens, whether it is a government, or a way of doing business or whatever it is, the people who are holding the reins—**making energy and climate change policy decisions**, who have their hands on the switch, they go bat-shit crazy.

"I mean anyone who is not tearing down their team right now—**CCS and reversing their LNG import terminal plans** and rebuilding it using your model—**biomass**, they're **just burning dinosaurs**. They're sitting on their ass—**will be sweating their asses off** on the sofa **in 2050**. October watching the Boston Red Sox win the World Series."

By Ed Rode, DNV GL
'With apologies to the writers of 'Moneyball'
Summary

- Significant innovation and technical progress has been made, need to scale up to pilot
- Novel combinations of technologies to maximize the utilization potentials and derive critical economies and carbon balance
- The nexus between CO2 utilization and renewable energy must be better exploited
- We must communicate better to decision makers
- Standards and guidelines help in reducing financial risks and improve interoperability
Renewable feedstocks supplying the petrochemical industry

Ed Rode
Edward.rode@dnvgl.com
614-761-1214 (ofc) ; 614-356-0925 (cell)

www.dnvgl.com

SAFER, SMARTER, GREENER