DNV-GL

Renewable feedstocks supplying the petrochemical industry

NARA, Seattle, May 3, 2016 Ed Rode, Arun Agarwal, Narasi Sridhar

Contents

- Why is CO2 utilization important?
- What is DNV GL doing about it?
- What are the barriers?
- Ways to overcome the barriers current status
- Going forward

We are a global classification, certification, technical assurance and advisory company

OUR PURPOSE

TO SAFEGUARD LIFE, PROPERTY AND THE ENVIRONMENT

Only by connecting the details can we impact the bigger picture

Global reach – local competence

150

years

350 offices

100

countries

15,000

employees

Why is CO₂ utilization important?

- The world will continue to rely mainly on fossil fuels and fossil-fuel based chemicals
- CCS is unlikely to meet its targets at least for the foreseeable future, but there could be large concentrations of CO₂ available
- Significant increases in renewable energy will require mechanisms to store excess electrical energy
- CO₂ utilization is capable of unlocking the vast innovation potential of society

From Fossil to CO₂ Economy

There are many ways to utilize CO₂

Advantages of Electrochemical Route over Other Processes

Energy for CO₂ conversion can be modest

Product	Gibbs Free energy, kJ/mol
Water to hydrogen	237
Iron ore to iron	740
Silica to silicon	798

Why Formic Acid? Highest energy eff. & potential profitability

Market price of Formic acid offered most favourable price gap

Formic acid (and CO) had highest selectivity and lowest energy consumption

<u>Electrochemical Reduction of Carbon Dioxide to Formic Acid</u> (ECFORM)

DNV GL Efforts in CO₂ Utilization

Lab studies Cu catalyst, CH_4 , C_2H_4

Small reactor studies Sn catalyst, HCOOH

Demo reactor, 1Kg/d Self powered trailer

Improve process chemistry, catalyst life

Focus on traditional DNV GL services

2008

2009

2010

2011

2012

2013

2014

2015

- Start of larger internal project
- Focus on formic acid
- Other conversion processes
- Energy analyses

Position paper on CO₂ utilization

- Value chain analyses
- Berkeley workshop

13

Supported other networks

Interactions with other technology developers

Establish external partnerships to demonstrate value chains

Barriers for adoption – CO₂ Utilization

Policy Barriers Technology Barriers Financial Barriers Lack of sufficient High energy and chemical Competition with fossil carbon incentive consumption fuels and chemicals Lack of subsidies, Cost and energy Market saturation due loans, and credits requirements of CO₂ to high CO₂ volumes capture Lack of an industry Distributed production Long-term performance reducing scale advantage voice Carbon balance Lack of inclusion of novel Long time horizon for return on investment CO₂ utilization pathways in international policies

DNV GL © 2013

Overcoming Technology barriers

Technology Barriers

High energy and chemical consumption

Cost and energy requirements of CO₂ capture

Long-term performance

Carbon balance

- Reduce activation energies through novel catalysts, chemistry, and biology
 - Energy and chemical inputs must be balanced
- Single technologies won't be sufficient leverage existing infrastructure and technologies
- Long-term demonstration test centers
- Novel capture technologies
 - Traditional absorption-based capture too big and expensive
- The use of renewable power, energy harvesting will improve carbon balance and economics – LCA analysis
- Standards & guidelines

Novel Electrodes to Increase current density to reduce CAPEX

- Current (rate of rxn)
 directly influences the
 CAPEX (no. of reactors)
- Selectivity for formate reaction (Faradaic Efficiency) = 70 – 90%
- Stability of current and FE over time is key

Catalyst - Electrode Substrate
1 solid Sn only
2Sn - CFP
3 Nano Sn - CFP

ECFORM

Stable Performance - High Current density and formate selectivity

Nano-tin catalyst

Setup

3x reduction in reactors achieved, hence lower CAPEX

Technical Targets Achieved, Technology is 'ready' for scale-up

CAPEX

OPEX

DNVGL has de-risked by tech. development & optimization.

Patents: 2 issued, 3 filed

10

Overcoming financial barriers

Financial Barriers

Competition with fossil fuels and chemicals

Market saturation due to high CO₂ volumes

Distributed production reducing scale advantage

Long time horizon for return on investment

- Establish niche markets, then expand
- Government funding is essential to support long-term development
 - ARPA-e REFUELS project
- Prize schemes may bring novel solutions
 - CCEMC
 - X-Prize
- Government support is still essential
- Intergovernmental collaborations
- Standards and guidelines can reduce financial risks

The Chlor Alkali Process – as a model for scale-up

- Three electrochemical processes (numbers from J. Appl. Elect., 2008)
 - Mercury (being phased out) 3.1 to 3.4 MWh/t Cl₂
 - Diaphragm (asbestos and non-asbestos) 3.2 to 3.8 MWh/t Cl₂
 - Membrane 2.4 to 2.9 MWh/t Cl₂
- Long history
 - Over 100 years old
 - Energy reduction innovations occur even today (e.g., Oxygen depolarization cathodes)
 - Initial concept of ODC in 1950, but developn

Technology Advances = Reduce Energy/Increase Efficiency

NAFION® Cation Ion Exchange Membrane Employed

Mixed Metal Oxide Based Dimensionally Stable Anodes – long operating life

UHDE: Total supported: 20 MMtpy

Largest: 1 MMtpy

Operating data	
Current density	up to 7 kA/m
Power consumption	see grapl
Cell temperature	88-90 %
Service life	
anode coating	> 8 year
cathode coating	8 year
membranes	> 4 year
gaskets	> 4 year
compartments	> 20 year
Active area per element	2.72 m

Optimized Single Cells

Modular – Skid Mounted Stacks of Single Cells

78 cells per

stack, Norsk

Combined Electrochemical and Thermochemical routes Net reaction: $CO_2 + CH_4 + H_2O \rightarrow CH_3OH + HCOOH$

New Niche Markets: Electro-fuel Pathway

- Greater energy efficiency (15-30%) vs. biofuel (3-8%) pathway
- Production de-coupled from the sun
- Land-use minimized / no limitation with geography
- No competition with food (corn, sugar)
- Flexibility in end fuel butanol or diesel (depending on organism)
- Significant net reduction in CO₂ emission

Formic Acid As Feedstock

Renewable Feedstock to Basic Building Blocks

Renewable feedstocks

Simple Molecules

HCOOH

Methyl Formate

Methanol

Alkyl Formate

Alkali Formate

Carboxylic Acid

Formaldehyde

Glycols

Large volume markets are Accessible

Overcoming policy barriers

Policy Barriers

Lack of sufficient carbon incentive

Lack of subsidies, loans, and credits

Lack of an industry voice

Lack of inclusion of novel CO₂ utilization pathways in international policies

- Consistent policy support is essential
 - Pew report: 74 to 96% drop in wind energy market when production tax credits expired
- Improved communication to policy makers
 - Public polls on CCS show greater support to utilization
- Inclusion in renewable fuels standards
- An industry voice is needed to convince and hold policymakers
- Influence IPCC and other intergovernmental bodies
- Iowa Tax credit for bio-based Chemicals
- 'Skyfill' create a level playing field for alternative feedstocks

Scientific Leadership

Renewable Translation

"I know you <u>CCU</u> and biomass feedstock advocates are taking it in the teeth out there. But the first guy through the wall, he always gets bloodied. Always. This is <u>Renewables are</u> threatening not just a way of doing business, but in their minds is threatening the <u>game petrochemical establishment</u>. But what's really on their minds is that it is threatening their livelihood, threatening their jobs, threatening the <u>foundation of the chemicals industry</u> way they do things.

"And every time that happens, whether it is a government, or a way of doing business or whatever it is, the people who are holding the reins making energy and climate change policy decisions, who have their hands on the switch, they go bat-shit crazy.

"I mean anyone who is not tearing down their team right now CCS and reversing their LNG import terminal plans and rebuilding it using your model biomass, they're just burning dinosaurs. They're sitting on their ass will be sweating their asses off on the sofa in 2050. October watching the Boston Red Sox win the World Series."

By Ed Rode, DNV GL With apologies to the writers of 'Moneyball'

Summary

- Significant innovation and technical progress has been made, need to scale up to pilot
- Novel combinations of technologies to maximize the utilization potentials and derive critical economies and carbon balance
- The nexus between CO2 utilization and renewable energy must be better exploited
- We must communicate better to decision makers
- Standards and guidelines help in reducing financial risks and improve interoperability

Renewable feedstocks supplying the petrochemical industry

Ed Rode

Edward.rode@dnvgl.com 614-761-1214 (ofc); 614-356-0925 (cell)

www.dnvgl.com

SAFER, SMARTER, GREENER