THE VALUE OF A TREE

Energy literacy and the link to STEM

Ralph Rise-Lake Roosevelt High School

Sadie Perrin- UI MOSS

Jenny Schon- UI MOSS

VALUE OF A TREE LESSON

Objectives:

- 1. Students will understand how to calculate how much carbon is in a tree by measuring the tree's height, circumference, and age.
- 2. From this number, students can calculate how much jet fuel can be obtained from that tree and how much carbon it can sequester a year.
- Students will engage in a complex discussion of deciding how to use our local resources.

STEP 1: DETERMINE THE HEIGHT OF YOUR TREE

STEP 2: MEASURE THE CIRCUMFERENCE OF THE TREE

STEP 3: DETERMINE THE AMOUNT OF CARBON IN THE TREE

Circumference at Breast Height (in m) Circumference (m) Tree Height (m)

STEP 4: CALCULATE THE WEIGHT OF THE TREE

- Carbon of tree x 2 = W
 - W = ____kg

- Convert to tons: lkg = 0.0011 ton
 - Wkg x 0.0011=Wton
 - W = ____ tons

STEP 5: DETERMINE AMOUNT OF FUEL AVAILABLE IN TREE

- 1 ton = 50 gallons of jet fuel
 - Wton $x 50 = ____gallons$ of fuel

How Far Can I Fly in a Boeing 747		
Amount of carbon, kg	How far you can fly, miles	Amount of CO2 sequestered, kg
0-500	0-11	1,833
501-1,000	12-22	3,666
1,001-1,500	23-33	5,499
1,501-2,000	34-44	7,333
2,001-2,500	45-55	9,166
2,501-3,000	56-66	10,999
3,001-3,500	67-77	12,832
3,501-4,000	78-88	14,665
4,001-4,500	89-99	16,498
4,501-5,000	100-110	18,331
5,001-5,500	111-121	20,165
5,501-6,000	122-132	21,998
6,001-6,500	133-143	23,831
6,501-7,000	144-155	25,664
7.001-7.500	156-166	27.497

STEP 6: CALCULATE HOW FAR YOU CAN GO!

- A Boeing 747 burns 5 gallons per mile and can carry about 450 people
 - Use the Miles from McCall Chart
- How far can your tree get you? _____miles
- Half of a tree is used for other purposes (wood, paper), half is used for jet fuel.
- Divide the above number by 2 _____miles

STEP 7: CALCULATE THE AMOUNT OF CARBON DIOXIDE SEQUESTERED

- Weight of CO_2 = weight of carbon x 3.6663
 - Weight of CO₂= _____ kg of CO₂sequestered

STEP 8: DETERMINE THE AGE OF YOUR TREE

STEP 8 CONTINUED: CALCULATE THE AMOUNT OF CO₂ SEQUESTERED PER YEAR

- Use the increment borer to determine the age of the tree:
 years
 - Kg of CO₂sequestered / age of tree = kgs of
 CO₂sequestered per year
- Amount of CO₂ sequestered each year = _____kg
 - Convert to tons: lkg = 0.0011 ton, $Wkg \times 0.0011$
 - W =_____ tons of CO_2 sequestered per year
 - Use the Household Emissions Chart to compare.

SCHOOL BUS EXAMPLE

- A school bus travels on average 80 miles per trip
- •The average school bus gets 5 miles to the gallon
- •1 gallon of diesel = 0.0099 tons or 9.05 kg of CO₂ emitted
- •80 miles per day/5miles per gallon = 16 gallons of gas per day consumed
- •16 gallons x 9.05 kg = 144.8 kg of CO₂ emitted per school day
- •Compare to how much CO₂ your tree sequesters per year.

DISCUSSION

- How should we use our natural resources?
- Is it better to leave the tree in the forest to sequester CO₂ or to use the forest products to offset petroleum usage?
- What if the forest residuals are available from logging practices?

STEM TO THE RESCUE

QUESTIONS?

