

Engineering and
Economic
Considerations of
Renewable Energy
Production from Forest
Residues

POINTS OF DISCUSSION

- 1) What are the main factors that affect the cost of feedstock?
- 2) What is the impact of the main factors across the supply chain?
- 3) How does freshness of biomass affect sugar yield?
- 4) How does freshness of biomass affect bulk density?
- 5) How does freshness of biomass affect comminution costs?
- 6) How does freshness of biomass affect collection costs?

Forest residues and feedstock preparation

Sugars

Grindings

Forest Residues

FACTORS AFFECTING COST

- Piece size of residue
- Particle size of grindings
- Capacity of truck
- Collection distance
- Operational settings --> truck-machine interaction
- Fresh or aged
- Amount of sugars

Moisture Content in Biomass Deliveries to Seneca Cogeneration Plant 2013-16

Seneca, Turs, Sessions, 2016

Harvest Sites near Dexter, Oregon, USA

FRESH AND AGED FOREST HARVEST RESIDUES

MC = 60% Wet Basis Bark & Needles = 16.7% of Dry Mass

MC = 15% Wet Basis
Bark & Needles =6.2% of Dry Mass

FRESH HARVESTED BIOMASS

a) b)

POLYSACCHARIDES LABORATORY ANALYSIS

VALUE DIFFERENCE COMPONENTS AT MILL

• From Analytical Test: 26% more residues need to be delivered to provide the same amount of sugar from fresh residues.

 The greater the sum of collection + grinding + transportation distance (cost), the greater the cost penalty from the reduced sugar yield

VALUE DIFFERENCES DUE TO SUGAR CONTENT FOR A \$70/ODT DELIVERY COST FOR FRESH AND AGED FEEDSTOCK

	Fresh	Aged
Total polysaccharides, % on feedstock	44.6%	56.3%
Hydrolysis yield, as polysaccharides to feedstock		
polysaccharides, %	89.2%	89.2%
Sugars as polysaccharides, ODT per ODT feedstock, %	39.8%	50.2%
Sugars as monomers, ODT/ODT, %	35.8%	45.2%
Assumed delivered cost of feedstock, \$/ODT	70	70
Feedstock cost per kg of sugar monomers	0.195	0.155

Comminution and Transport

TRANSPORTATION COST

Road Surface	Loaded USD h ⁻¹	Unloaded USD h ⁻¹	Idling USD h ⁻¹
Gravel	86.3	77.6	50.0
Paved	118.4	100.0	50.0

6 x 4 Truck with 130 cy capacity trailer, 45 miles/hr paved (Average), 10 miles/hr gravel

MOISTURE CONTENT

RESIDUE HEIGHT IN TRAILER

Transportation Cost of Fresh and Aged Residues

COMMINUTION

Fresh Biomass (60% MC)

Bulk Density = 388.1 kg/m

Fuel Consumption = 1.0 L/GT

Simulation Results

100% Productivity = 69.5 GT/hr

100% Productivity = 41.7 ODT/hr

66% Productivity = 27.6 ODT/hr

Aged Biomass (15% MC)

Bulk Density = 184.2 kg/m3

Fuel Consumption = 2.2 L/GT

Simulation Results

100% Productivity = 49.6 GT/hr

100% Productivity = 41.2 ODT/hr

80% Productivity = 32.9 ODT/hr

Grinder Utilization for Fresh Biomass Lower Due to Increased Waiting Time due to Greater Number of Trucks Per Hour

COMMINUTION COSTS (750 HP GRINDER + LOADER)

Fresh Biomass

- Operating Cost with Fuel = \$357/hr
- Idle Time = \$116/hr
- 66% Productivity = 27.6 ODT/hr

Cost/ODT = \$10.0

Aged Biomass

- Operating Cost with Fuel = \$406/hr
- Idle Time = \$116/hr
- 80% Productivity = 32.9 ODT/hr

Cost/ODT=\$10.6

60.00 50.00 40.00 Cost per 30.00 20.00 10.00 0.00 135 165 195 225 255 285 315 345 315

Distance from the landing, m

→ System 1: 1-Loader only

-System 2: 1-Forwarder & Self-Loading

System 4: 2-Forwarders & 1-Loader

→System 3: 1-Forwarder & 1-Loader

Fresh and Aged Residue Delivery Costs and Sugar Penalty

One-Way	Collect	Grind	Grind	Transport	Transport	Cost to Mill Sugar		Difference	Sugar Cost		
km		Aged	Fresh	Aged	Fresh	Aged	Fresh	Penalty		Aged	Fresh
	\$/ODT	\$/ODT	\$/ODT	\$/ODT	\$/ODT	\$/ODT	\$/ODT	\$/ODT	\$/ODT	\$/kg	\$/kg
20	22.00	10.60	10.00	13.95	28.44	46.55	60.44	15.71	29.60	0.103	0.169
40	22.00	10.60	10.00	17.83	36.15	50.43	68.15	17.72	35.44	0.112	0.190
60	22.00	10.60	10.00	21.72	44.88	54.32	76.88	19.99	42.55	0.120	0.215
80	22.00	10.60	10.00	25.10	53.10	57.70	85.10	22.13	49.53	0.128	0.238
100	22.00	10.60	10.00	29.48	61.32	62.08	93.32	24.26	55.50	0.137	0.261
120	22.00	10.60	10.00	33.36	69.54	65.96	101.54	26.40	61.98	0.146	0.284
140	22.00	10.60	10.00	37.24	77.76	69.84	109.76	28.54	68.46	0.155	0.307
160	22.00	10.60	10.00	41.12	85.98	73.72	117.98	30.67	74.93	0.163	0.330

DIFFERENCE IN FRESH AND AGED RESIDUE COST INCLUDING COLLECTION+GRINDING+TRANSPORT+SUGAR YIELD PENALTY

SUGAR COST DIFFERENCES BY DISTANCE

One Way Distance to Conversion Facility, km

TOTAL ABOVEGROUND NUTRIENTS

Douglas-fir tree, 38 yrs old dbh=45.6 cm, height =33.5 m, crown length =19.9 m

Mainwaring, Maguire, and Harrison, NARA Annual Meeting, 2015, Spokane, WA

Conclusions from the Engineering and Economic Perspective

Aged more valuable du to higher sugar yield

Aged residues much less expensive

Aged slightly more expensive but few differences

Few truck loads less impact on roads

No difference: Volume limited

Needles nutrient content important to left in the field

Rene Zamora-Cristales PhD, <u>rene.zamora@oregonstate.edu</u>
John Sessions, PhD, PE <u>john.sessions@oregonstate.edu</u>

Department of Forest Engineering, Resources, and Management College of Forestry Oregon State University

Questions?

