

Advanced Hardwood Biofuels Northwest

Poplar Plantation Management for Biomass Production in the Pacific Northwest

AHB Phase I poplar demonstration farms

AHB Phase I poplar demonstration farms - Objectives

- Quantify biomass yields
- Evaluate management practices
- Evaluate production costs
- Refine harvesting systems
- Pilot scale testing of selected genotypes
- Provide a testing ground for related research

United States

Agriculture

Department of

AHB Phase I poplar demonstration farms - sites

AHB Phase I poplar demonstration farms - sites

Location	Precip (mm)	Elev. (m)	Physiographic location	Soil	Topography
Jefferson, OR	1153	82	Willamette valley alluvial terrace	Clay loam	Flat to < 5% slopes
Hayden, ID	668	700	Hayden valley alluvial terrace	Silty loam with coarse gravel fraction	Flat
Clarksburg, CA	457	1	Sacramento valley flood plain	Clay	Flat
Mt. Vernon, WA	828	213	Cascades range piedmont	Clay loam with coarse gravel fraction	Rolling hills to < 10% slopes

United States

Agriculture

Department of

Replicated trials within AHB Phase I poplar demonstration farm sites

- Evaluation of hybrid poplar clones for bioenergy use
- 2. Hybrid poplar biomass productivity trials
- Preliminary evaluation of red alder inter-specific hybridization

Biomass productivity trials

Full factorial, Split-plot design

- Jefferson, OR
 - 2 Harvest seasons (Dormant, Active) whole plots
 - 2 Planting densities (2691, 5381 TPHA) sub-plots
 - 2 Alder intercropping (yes, no) sub-plots
 - 4 Replications (Clones), 132 trees/trt plot, 40 trees/measurement plot
- Hayden, ID
 - 2 Harvest seasons (Dormant, Active) whole plots
 - 3 Planting densities (2691, 3588, 5381 TPHA) sub-plots
 - 5 Replications (Clones), 132 trees/trt plot, 40 trees/measurement plot

Biomass productivity trial (Jefferson, OR)

= Plot number; (int.) = alder intercropping; (No int.) = no alder intercropping 10 x 4 10 x 4 10 x 2 10 x 2 Dormant -2 3 (int.) (int.) (No int.) (No int. Rep 1 10 x 4 10 x 2/ 10 x 4 10 x 2 (7 5 Active (No int.) (int.) (int.) (No int.) 10 x 2 (₁₁ 10 x 2 10 x 4 10 x 4 9 Active 10 12 (No int.) (int.) (No int.) (int.) Rep 2 10 x 4 10 x 4 10 x 2 10 x 2 (16 13 14 **Dormant** 15 (No int.) (No int.) (int.) (int.) 10 x 4 10 x 2 10 x 2 (19 10 x 4 Dormant 17 20 18 (int.) (int.) (No int.) (No int.) Rep 3 10 x 4 10 x 2 (21 10 x 4 10 x 2/ Active 22 23 (No int.) (int.) (int.) 10 x 4 10 x 4 10 x 2 (27 10 x 2 Dormant 25 26 (int.) (No int.) (int.) (No int.) Rep 4 10 x 2 (30 10 x 2 10 x 4 10 x 4 32 29 **Active** 31 (No int.) (int.) (No int.) (int.)

Site specific management practices

Jefferson, OR

Mt. Vernon, WA

Year 1

Year 2

Yield by planting density after 2 years

Yield by clone after 2 years

Planting density effect on diameter

United States

Agriculture

Department of

Quantification of Yields

Stem to Branch Ratio

United States

Agriculture

Department of

Stem to Branch Ratio

Opportunities for genetic selection

Effect of Alder intercropping on poplar yield after 2 years

United States

Agriculture

Intercropped alder yield after 2 years

Conclusions

- Significant site differences in productivity
- Clonal selection is a key factor to increase productivity
- More trees = Higher yield (at more productive site, age 2)
- Density dependent diameter differentiation showing at this early age
- Greater diameter impact on yields achieved at DBH > 8 cm
- Higher planting density leads to higher wood:branch in some clones
- Clonal selection for specific gravity could potentially increase yields
- Alder intercropping not affecting Poplar productivity (adds 1 BDMT/ha)