Poplar Plantation Management for Biomass Production in the Pacific Northwest
AHB Phase I poplar demonstration farms
AHB Phase I poplar demonstration farms - Objectives

- Quantify biomass yields
- Evaluate management practices
- Evaluate production costs
- Refine harvesting systems
- Pilot scale testing of selected genotypes
- Provide a testing ground for related research
AHB Phase I poplar demonstration farms - sites
AHB Phase I poplar demonstration farms - sites

<table>
<thead>
<tr>
<th>Location</th>
<th>Precip (mm)</th>
<th>Elev. (m)</th>
<th>Physiographic location</th>
<th>Soil</th>
<th>Topography</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jefferson, OR</td>
<td>1153</td>
<td>82</td>
<td>Willamette valley alluvial terrace</td>
<td>Clay loam</td>
<td>Flat to < 5% slopes</td>
</tr>
<tr>
<td>Hayden, ID</td>
<td>668</td>
<td>700</td>
<td>Hayden valley alluvial terrace</td>
<td>Silty loam with coarse gravel fraction</td>
<td>Flat</td>
</tr>
<tr>
<td>Clarksburg, CA</td>
<td>457</td>
<td>1</td>
<td>Sacramento valley flood plain</td>
<td>Clay</td>
<td>Flat</td>
</tr>
<tr>
<td>Mt. Vernon, WA</td>
<td>828</td>
<td>213</td>
<td>Cascades range piedmont</td>
<td>Clay loam with coarse gravel fraction</td>
<td>Rolling hills to < 10% slopes</td>
</tr>
</tbody>
</table>
Replicated trials within AHB Phase I poplar demonstration farm sites

1. Evaluation of hybrid poplar clones for bioenergy use

2. Hybrid poplar biomass productivity trials

3. Preliminary evaluation of red alder inter-specific hybridization
Biomass productivity trials

- Full factorial, Split-plot design
 - Jefferson, OR
 - 2 Harvest seasons (Dormant, Active) whole plots
 - 2 Planting densities (2691, 5381 TPHA) sub-plots
 - 2 Alder intercropping (yes, no) sub-plots
 - 4 Replications (Clones), 132 trees/trt plot, 40 trees/measurement plot
 - Hayden, ID
 - 2 Harvest seasons (Dormant, Active) whole plots
 - 3 Planting densities (2691, 3588, 5381 TPHA) sub-plots
 - 5 Replications (Clones), 132 trees/trt plot, 40 trees/measurement plot
Biomass productivity trial (Jefferson, OR)

<table>
<thead>
<tr>
<th>Rep 1</th>
<th>Rep 2</th>
<th>Rep 3</th>
<th>Rep 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dormant</td>
<td>Active</td>
<td>Dormant</td>
<td>Active</td>
</tr>
<tr>
<td>10 x 2 (int.)</td>
<td>10 x 4 (int.)</td>
<td>10 x 4 (No int.)</td>
<td>10 x 4 (Int.)</td>
</tr>
<tr>
<td>10 x 4 (No int.)</td>
<td>10 x 2 (int.)</td>
<td>10 x 4 (Int.)</td>
<td>10 x 2 (No int.)</td>
</tr>
<tr>
<td>10 x 4 (No int.)</td>
<td>10 x 2 (int.)</td>
<td>10 x 4 (Int.)</td>
<td>10 x 2 (No int.)</td>
</tr>
<tr>
<td>10 x 4 (No int.)</td>
<td>10 x 2 (int.)</td>
<td>10 x 4 (Int.)</td>
<td>10 x 2 (No int.)</td>
</tr>
<tr>
<td>10 x 4 (No int.)</td>
<td>10 x 2 (int.)</td>
<td>10 x 4 (Int.)</td>
<td>10 x 2 (No int.)</td>
</tr>
<tr>
<td>10 x 4 (No int.)</td>
<td>10 x 2 (int.)</td>
<td>10 x 4 (Int.)</td>
<td>10 x 2 (No int.)</td>
</tr>
<tr>
<td>10 x 4 (No int.)</td>
<td>10 x 2 (int.)</td>
<td>10 x 4 (Int.)</td>
<td>10 x 2 (No int.)</td>
</tr>
<tr>
<td>10 x 4 (No int.)</td>
<td>10 x 2 (int.)</td>
<td>10 x 4 (Int.)</td>
<td>10 x 2 (No int.)</td>
</tr>
</tbody>
</table>

= Plot number; (int.) = alder intercropping; (No int.) = no alder intercropping

Advanced **Hardwood Biofuels Northwest**

hardwoodbiofuels.org
Site specific management practices

Jefferson, OR

Mt. Vernon, WA
Year 1
Year 2
Yield by planting density after 2 years

![Graph showing yield by planting density after 2 years. The x-axis represents planting density (TPHA) with values 2691, 3588, and 5382. The y-axis represents yield (BDMT/ha) with values ranging from 0 to 11. The graph includes bars for Jefferson, OR, and Hayden, ID, with error bars indicating variability.](image-url)
Yield by clone after 2 years

Clones planted at Jefferson, OR:
- 1428: Yield (BDMT/ha)
- 4491: Yield (BDMT/ha)
- 6320: Yield (BDMT/ha)
- 7476: Yield (BDMT/ha)

Clones planted at Hayden, ID:
- BC79: Yield (BDMT/ha)
- BC81: Yield (BDMT/ha)
- BC82: Yield (BDMT/ha)
- OP367: Yield (BDMT/ha)
- Simplot: Yield (BDMT/ha)
Planting density effect on diameter

- **Jefferson**
 - 2691 TPHA
 - 3588 TPHA
 - 5382 TPHA

- **Hayden**
 - 2691 TPHA
 - 3588 TPHA
 - 5382 TPHA

DBH (cm)

Sites
Quantification of Yields

\[y = 0.2096x^{2.279} \]

\[R^2 = 0.973 \]
Stem to Branch Ratio

Jefferson, OR

<table>
<thead>
<tr>
<th>Clones</th>
<th>2691 TPHA</th>
<th>5382 TPHA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1428</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4491</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6320</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7476</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Stem to Branch Ratio

Hayden, ID

Clones

BC79 BC81 BC82 OP367 SIMPLOT

2691 TPHA
3588 TPHA
5382 TPHA

Advanced Hardwood Biofuels Northwest
hardwoodbiofuels.org
Opportunities for genetic selection
Effect of Alder intercropping on poplar yield after 2 years
Intercropped alder yield after 2 years

![Graph showing intercropped alder yield after 2 years.](image-url)
Conclusions

- Significant site differences in productivity
- Clonal selection is a key factor to increase productivity
- More trees = Higher yield (at more productive site, age 2)
- Density dependent diameter differentiation showing at this early age
- Greater diameter impact on yields achieved at DBH > 8 cm
- Higher planting density leads to higher wood:branch in some clones
- Clonal selection for specific gravity could potentially increase yields
- Alder intercropping not affecting Poplar productivity (adds 1 BDMT/ha)