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Long-term space missions require minimized boil-off from liquid hydrogen and oxygen tanks to 

reduce Gross Lift Off Weight (GLOW). Leading rocket technologies utilize liquid hydrogen boil-off vapors to 

refrigerate and potentially eliminate boil-off from the liquid oxygen tank. The use of liquid hydrogen allows a 

substantial amount of heat to be conveyed out of the system. Statistical thermodynamic calculations 

estimate that the amount of heat carried with the hydrogen refrigerant can be increased up to 50 % through 

catalysis of the parahydrogen-orthohydrogen conversion. This thesis discusses development of the Cryo-

catalysis Hydrogen Experiment Facility (CHEF) in the HYdrogen Properties for Energy Research (HYPER) 

laboratory at Washington State University. Initial experimental results are presented that validate statistical 

thermodynamic predictions of cooling capacity while catalyzing parahydrogen-orthohydrogen conversion. 

This proof-of-concept indicates that the mass of hydrogen vented to space can be reduced nearly 33 %. Initial 

system capabilities and a plan for future measurements are presented. 
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Nomenclature 

E Electrical potential 

I Moment of inertia 

j Nuclear rotational energy level 

kB Boltzmann constant 

k Thermal Conductivity 

L Length 

N Number of molecules 

Nu Nusselt number 

P Statistical weight 

Pr Prandtl number 

Q Heat 

R Electrical resistance 

Re Reynolds number 

T Temperature 

x Concentration (mole fraction) 

ε Energy of a state 

𝜃 Characteristic temperature
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Introduction 

 Hydrogen’s history in space technologies lifted off with a bang. A liquid hydrogen and liquid oxygen 

(LH2/LOx) fueled Centaur upper stage rocket exploded 54 seconds after liftoff during its maiden voyage in 

May of 1962 (1). The failure, haven taken place less than a year after President John F. Kennedy’s famous 

declaration to send men to the moon, was demoralizing. Yet despite the significant technical challenges that 

had to be overcome, NASA scientists remained committed; liquid hydrogen was the United States’ best hope 

to land mankind on the moon. 

 

Figure 1: Image of the liquid hydrogen fueled Centaur upper stage during construction. (1) 
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 Liquid hydrogen was not the first space bound rocket fuel to be researched. In the early 1950’s at the 

dawn of the space age, the most popular rocket designs employed the use of RP-1 kerosene fuel and liquid 

oxygen. Kerosene is a leading rocket fuel because of its low cost, high density, and high stability at room 

temperature. This made RP-1 easier to work with and far safer than many alternatives. However the specific 

impulse of RP-1 was comparatively low and many rocket scientists and engineers recognized the enormous 

potential for liquid hydrogen fuel. Specific impulse (Isp) is the ratio of thrust to the required mass flow rate of 

fuel and oxidizer. In this way, Isp is effectively a measure of an engine’s efficiency and is largely influenced by 

the selection of propellants. Though less dense than RP-1, the improvements in specific impulse, and exhaust 

velocity (which determines a vehicles maximum speed) justified the need for advanced research with liquid 

hydrogen fuel. Before the advantages could be realized however, many serious design challenges had to be 

solved. 

Unlike Hydrocarbon fuels, hydrogen must be stored at temperatures below 25K (-250°C) to be 

maintained in liquid form. Although engineers had successfully used cryogenic liquid oxygen for years, the 

extremely low temperatures of liquid hydrogen created significantly more problems. During the design and 

construction of the Centaur rocket, the first LH2/LOx fueled vehicle in space, engineers had to employ many 

unique design features to account for the significant fuel volume and extreme thermal shielding 

requirements. In an effort to save weight, Centaur engineers employed the use of a pressure stabilized tank, 

by which the tank was in effect turned into a stainless steel balloon to create a rigid structure for the rest of 

the rocket. The addition of thermal shielding on the nose of the rocket also had to be added to prevent the 

tank from overheating during lift-off as air rushed over the tank. Ultimately, these challenges would be 

overcome and Centaur would successfully prove liquid hydrogen as an essential fuel for future space 

exploration. Although many of the technical challenges in harnessing hydrogen as a fuel have been solved, 

hydrogen's largest limitation for future space exploration lies in the storage and transfer of this cryogenic 

liquid. 
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One of the largest drawbacks to using cryogenic fuels is the extremely low temperatures that must 

be maintained to prevent the fuel from boiling. As heat from the sun irradiates the fuel tanks in the upper 

stage rocket, the boil-off vapors must be vented to prevent the tanks from rupturing due to the increased 

pressure. This can be mitigated by increasing the thermal shielding around the rocket; but without an active 

cooling system (such as a cryocooler), there will always be a small fraction of fuel lost to boil off. For short 

duration missions, such as positioning satellites into earth orbit, boil-off is not a concern. However, the 

importance of mitigating boil-off scales with increases in mission time and becomes a significant concern. 

Figure 2 shows a relationship between GLOW, boil-off rate, and mission duration. 

 

Figure 2: Percentage increase in ascent stage mass plotted versus boil off rate per day for various mission 

durations (adapted from Kutter 2010). This plot shows that a boil-off rate of less than 0.03% is required for 

mission durations exceeding 500 days. 
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Boil-off rates as high as 2% per day were common in second stage fuel systems during the Apollo 

program (1). This high boil-off rate meant that a significant amount of excess fuel had to be launched into 

space for long duration flights to ensure enough fuel would be available. This excess fuel greatly increases the 

ascent stage mass and leads to in-space boil-off being the single largest factor in GLOW and therefore launch 

cost.  

Modern liquid hydrogen space stages utilize passive cooling via boil-off hydrogen vapors to 

refrigerate the liquid oxygen tank and common thermal shielding. Using the hydrogen boil-off vapors is ideal 

because hydrogen’s specific latent heat of vaporization is nearly twice that of oxygen’s, and the change in 

enthalpy from the boiling point to 220K is nearly ten times higher. Hydrogen is therefore intentionally vented 

to cool the thermal shielding and eliminate oxygen boil-off. (2) Passive venting of hydrogen for heat shielding 

is an effective strategy for GLOW reduction and standard practice; however a quantum mechanical 

characteristic unique to hydrogen molecules can increase the specific vapor cooling load as much as 50 % (1). 

If functionalized, this characteristic can reduce the required hydrogen boil off by as much as 33%, leading to 

substantial reductions in GLOW. United Launch Alliance (ULA) has funded this research to design, build, and 

run experiments in a new test facility designed as a proof of this concept.                                            

Theory 

Quantum Mechanics and Hydrogen Spin States 
 

 In 1932, physicist Werner Heisenberg was awarded the Nobel Prize “for the creation of quantum 

mechanics, the application of which has, inter alia, led to the discovery of the allotropic forms of hydrogen.” 

(4) Quantum mechanics stands as one of the crowning achievements in physics during the 20th century, and 

has completely changed the understanding of reality. 
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Figure 3: Parahydrogen and Orthohydrogen nuclear spin isomers of the hydrogen molecule. Parahydrogen 

occupies even rotational energy levels and orthohydrogen occupies odd rotational energy levels. 

 Quantum mechanics asserts that at the atomic scale particles do not behave the way we might 

expect by Newtonian mechanics. Instead, events are determined by probability. The implications of this 

theory have had far reaching effects in both technological progress and our basic understanding of how the 

world works. Quantum mechanics was developed, in part, to solve one of the leading problems in all of 

science at the time: The odd behavior of hydrogen’s specific heat at cryogenic temperatures. 

During experimentation with liquid hydrogen in 1912, German experimentalist Arnold Eucken 

recorded an odd phenomenon that could not be explained by the physics of the day. While measuring heat 

capacities of hydrogen at cryogenic temperatures down to the boiling point (~20K), Eucken observed a 

distinct hysteresis when comparing the curve he measured as the hydrogen was cooling, and the curve 

created as the hydrogen was warming. For years, many of the world’s greatest minds were unable to find an 

explanation. (5) It wasn’t until 1929 when Paul Harteck and Karl Bonhoeffer made the connection between 

Heisenberg’s quantum theory and Eucken’s odd data that the existence of two spin isomers of hydrogen was 

finally discovered. (6) 
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 Hydrogen naturally exists as a diatomic element, with two hydrogen atoms covalently bonded 

together to form a molecule of hydrogenI. Each hydrogen atom has a single proton for a nucleus (neglecting 

the insignificant fraction of deuterium and tritium) and one electron orbiting it. These protons are not 

stationary however, and have a “spin” associated with them.II When two hydrogen atoms combine to form a 

hydrogen molecule, they align along the axis of rotation. The direction of the two proton’s spins can 

therefore either line up the same direction or oppose each other. This gives rise to the two spin states of 

hydrogen; the opposed spin parahydrogen and the aligned spin orthohydrogen. The concentration of the two 

forms depends greatly on the available energy in the system because there is an energy difference between 

quantum levels. (6) 

 Orthohydrogen is a triplet restricted to odd rotational states (j=1,3,5…). This gives rise to three forms 

of orthohydrogen that are identical in energy, but differ in wave-function. Parahydrogen is a singlet with even 

rotational states (j=0,2,4…), with only one wave-form. At temperatures above ~200K, enough energy is 

present such that all four possible wave-functions exist in equilibrium, resulting in a 3:1 orthohydrogen to 

parahydrogen ratio. The lower energy wave function corresponding to the parahydrogen state (j=0) becomes 

favored as the temperature of the hydrogen decreases. 99.8% of hydrogen is in the para form at the normal 

boiling point. (6) There is a temperature dependent equilibrium ratio between the two forms. 

This concentration is governed by Boltzmann’s distribution law, which states that the fraction of 

molecules (NJ) of the total number (N0) in the rotational state J is given by  

𝑁𝑗 = 𝑁0𝑃𝑗 exp (−
𝜀𝑗

𝑘𝐵𝑇
) 

     [1] 

                                                             
I It should be understood that the word ‘hydrogen’ refers to diatomic hydrogen; context will indicate when a single 
atom is meant (i.e. hydrogen atom, monatomic hydrogen etc.). 
II A proton has a spin of ½ in units of ℎ/2𝜋, where h is Planck’s constant. 
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Where kB is Boltsmann’s constant, PJ is the statistical weight, and εJ is the energy of state j. Because the ortho 

form consists of all odd rotational states, and para of the even, the ratio between the two forms becomes 

𝑁𝑝

𝑁𝑜
=

∑ 𝑃𝑗 exp(− 𝜀𝑗 𝑘𝐵𝑇⁄ )𝑗=𝑒𝑣𝑒𝑛

∑ 𝑃𝑗 exp(− 𝜀𝑗 𝑘𝐵𝑇⁄ )𝑗=𝑜𝑑𝑑

 

 [2] 

If we consider that 

𝜀𝐽 =
𝑗(𝑗+1)ℎ2

8𝜋2𝐼
= 𝑗(𝑗 + 1)𝜃𝑟𝑘𝐵 𝜃𝑟 =

ℎ2

8𝜋2𝐼𝑘𝐵
 

  [3] … [4] 

𝑃𝑗 = { 
2𝑗 + 1 for 𝑗 = even

3(2𝑗 + 1) for 𝑗 = odd
 } 

  [5] 

then 

𝑁𝑝

𝑁𝑜
=

∑ (2𝑗 + 1) exp(− 𝑗(𝑗 + 1)𝜃𝑟 𝑇⁄ )𝑗=𝑒𝑣𝑒𝑛

∑ 3(2𝑗 + 1) exp(− 𝑗(𝑗 + 1)𝜃𝑟 𝑇⁄ )𝑗=𝑜𝑑𝑑
 

[6] 

and expanding the sum, we have 

𝑁𝑝

𝑁𝑜
=

1 + 5 exp (−
6𝜃𝑟
𝑇 ) + 9 exp (−

20𝜃𝑟
𝑇 ) + 13 exp (−

42𝜃𝑟
𝑇 ) + ⋯

3(3 exp (−
2𝜃𝑟
𝑇 ) + 7 exp (−

12𝜃𝑟
𝑇 ) + 11 exp (−

30𝜃𝑟
𝜃𝑟𝑇 ) + ⋯

 

               [7] 

𝑁𝑝

𝑁𝑜
=

1 − 𝑥𝑜,𝑒𝑞

𝑥𝑜,𝑒𝑞
 

[8] 
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 For hydrogen, the characteristic rotational temperature is 𝜃𝑟 = 84.837[𝐾]. (6) Using equations [7] 

and [8], we can calculate the equilibrium concentration of parahydrogen in a hydrogen sample at a given 

temperature.III A plot of the equilibrium composition versus temperature is provided in Figure 4. The plot 

shows that at temperatures near the boiling point, the equilibrium composition is almost pure parahydrogen, 

and at elevated temperatures, the composition asymptotically approaches a 3:1 ratio. Because the two 

hydrogen atoms are tightly bonded together however, the conversion between the ortho and para forms is 

not free. 

 

 

Figure 4: Equilibrium orthohydrogen percent composition plotted versus temperature. 

                                                             
III This derivation was paraphrased from Farkas pg 13-15 (6) 
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 In order for an orthohydrogen molecule to become parahydrogen (or vise versa), the bond between 

them must be broken and re-formed in the opposite orientation. If there are only other hydrogen molecules 

to interact with this becomes a very rare event, with half livesIV in excess of a year. (6) If the gas interacts 

with a catalytic material however, conversion between the two states occurs much faster with half lives on 

the order of minutes to seconds. Complete conversion can occur within a few weeks in aluminum and brass 

containers and in only seconds for activated catalyst beds. In addition to a catalyst however, an energy 

source (or sink) is also required else the conversion energy will be extracted from the fluid, lowering the 

temperature and resulting equilibrium composition. 

   The difference in energy associated with the different rotational levels means that energy is 

released when orthohydrogen converts to parahydrogen, and energy is absorbed in the reverse. This 

phenomenon can be thought of as a latent heat of conversion, in that adding energy to the gas may not 

result in an increase in sensible heat, but rather be absorbed in the rotational energy of a molecule as it 

converts from parahydrogen to orthohydrogen. At the dawn of industrial liquid hydrogen production, this 

presented a major problem. 

 Liquid hydrogen is often produced from separation from hydrocarbons and then stored in vacuum 

insulated Dewars. This storage method significantly reduces heat flux from the outside of the container and is 

the standard for cryogenic liquid storage, however this storage method cannot shield the hydrogen from 

stored ortho-para conversion energy. When orthohydrogen converts to the para form at the normal boiling 

point, 525 kJ/kg of heat is released, which is nearly 15% greater than the latent heat of vaporization at the 

normal boiling point, 476 kJ/kg. The ideal-gas enthalpies and conversion energies of orthohydrogen and 

parahydrogen are shown in Figure 5. Modern hydrogen liquefying processes now ensure that the liquid 

hydrogen has reached equilibrium concentration at 99.8% parahydrogen before being transported and 

stored for use. Though the two spin isomers of hydrogen have been a hindrance to liquid storage in the past, 

                                                             
IV The length of time required for half of a sample to convert from one form to the other. 



10 
 

by making use of the right conditions, the ortho-para characteristic can be used to improve passive cooling 

systems. 

 

Figure 5: Variation in ideal gas enthalpy and conversion enthalpy with temperature. 

 Improved Passive Cooling System Using Catalysts 

 Liquid hydrogen and liquid oxygen are held in separate thermally insulated tanks in upper stage 

rockets. Each tank is maintained at its respective boiling point; about 20K for hydrogen and 90K for oxygen 

(depending on pressure). To mitigate the loss of the heavy (and therefore expensive) liquid oxygen, the 

hydrogen is intentionally vented through heat exchanger tubes to cool the oxygen tank. This passive cooling 

system effectively eliminates oxygen boil off, but requires excess hydrogen fuel. However because only 

standard metal materials are used in the heat exchanger vent tubes, the hydrogen being evacuated into 

space at 90K is still nearly all in the parahydrogen form. If an active catalyst was introduced, significant 

0 100 200 300 400
0.0

2.5

5.0

7.5

0

0.25

0.5

0.75

Temperature  [K]

Id
ea

l-
g
a
s 

en
th

a
lp

y
 [

M
J
/k

g
]

(0-100) ortho

(100-0) para

(75-25)

(50-50)

(25-75) normal

C
o
n

v
er

si
o
n

 e
n

th
a
lp

y
 [

M
J
/k

g
]conversion enthalpy

Ortho-para

Latent heat



11 
 

improvement to the current passive cooling systems for rocket LH2/LOx fuel storage is possible by taking 

advantage of the parahydrogen to orthohydrogen conversion. (3)  

 

Figure 6: Isobaric Ideal-Gas Heat Capacities plotted versus temperature for various orthohydrogen-

parahydrogen compositions. The equilibrium composition and heat capacity curves are also plotted to 

show the correlation between the change in composition and effective heat capacity. 

  The heat capacity of a fluid governs the amount of heat capable of being absorbed during transition 

between temperatures. A plot of isobaric heat capacities for various compositions of hydrogen vs 

temperature is shown in Figure 6. When The heat capacity follows well defined curves and is unable to 

convert to follow the equilibrium concentration curve when hydrogen is locked in a particular composition. If 

the hydrogen is freely and continuously exposed to a perfect catalyst, the hydrogen will continuously convert 

to equilibrium as temperature increases. This latent heat of conversion can be combined into an effective 
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heat capacity. By integrating this curve and comparing to the energy absorbed by pure parahydrogen, a 

theoretical increase of 50% in cooling capacity between 20 and 90 K is possible for passive cooling systems. 

 Common commercial catalysts are currently available in the form of powdered or gelled 

paramagnetic ferric oxide intended for packed fixed bed reactors for liquefying hydrogen. Since this is a 

cheap and effective catalyst, very little research has been done on possible new types of conversion catalysts 

theorized since the late 1960’s. For use in upper stage rocket fuel management systems, advanced catalysts 

like nano-porous iron oxides and ruthenium surface coatings could vastly improve performance and lifetime 

of the heat exchanger.  

Comparison of Para-Ortho Conversion With Throttling 

 The concept of increased cooling power using a catalyst is a somewhat abstract idea. For this reason 

many question why controlled throttling of pressurized hydrogen is not considered as a more feasible 

alternative. To compare the two cooling methods, a simple thermodynamic model was programmed to 

calculate the power absorbed by the processes.V 

 In the case of the throttling it is assumed that the hydrogen has been brought to the temperature to 

be cooled (90K for LOx cooling), and then is throttled from the tank pressure to the vacuum of space. 

Likewise, in the case of p-o conversion, the energy required for the hydrogen gas to increase in temperature 

is neglected and only the energy required to convert at the set temperature is considered. Additionally, the 

equilibrium concentration of hydrogen’s allotropes is dependent on this final temperature, limiting the 

maximum amount of power that can be extracted. In both cases, the change in enthalpy is used to determine 

the total power required for the process. 

 The analysis confirmed that ortho-para conversion far outperforms throttling for cooling at 51K and 

above.  In isothermal expansion at 90K, throttling can extract 5.8 kJ/kg. Under the same conditions, para-

                                                             
V EES code and summary of results presented in the Appendix 
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ortho conversion can absorb as much as 384.1 kJ/kg. Throttling’s poor performance is due largely to the fact 

that hydrogen has a Joule-Thompson inversion temperature of ~140K (pressure dependent). At any 

temperature above this point, the cooling effect of throttling will be reverse. Because of this, novel, non-

pressure based methods for improving passive cooling systems are needed. 

Previous Catalyst Studies and Goals of Experiment 

 The vast majority of research into the reaction rates of the parahydrogen-orthohydrogen conversion 

and catalyst activities has been focused on isothermal reactor conditions with various pressures over a range 

of flow rates. (7) (8) This experimental design is logical for characterizing commercial catalysts intended for 

use in liquefaction and fundamental studies of the conversion kinetics, and isothermal reactors were easy to 

create by immersing the catalyst bed in a boiling liquid cryogen, like nitrogen at 77 K. However in a passive 

cooling heat exchanger, the temperature of the hydrogen will increase from 20K to 90K through the reactor 

while cooling the liquid oxygen. No experiment has yet been performed to measure catalyst activities, or 

more importantly, the necessary space velocityVI to achieve the desired increase in cooling capacity. 

  Additionally, there has been very little published research on the performance of newly developed 

catalysts for ortho-para conversion. Although current commercial interest in them suggests a benefit in 

performance, a freely available study has yet to be performed. For this reason, the test reactor will be 

designed to accommodate a variety of exotic catalysts. 

  

                                                             
VI A non-dimensionalized flow rate that is defined as the volume flow rate of gas divided by the volume of the 
reactor. 
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Experimental Design 
 The goals of the experiment require a unique design for the test apparatus. Whereas previous 

experiments in catalysis research have used liquid nitrogen to maintain a cryogenic isothermal reactor at 77K, 

this experiment requires a range of temperatures and long duration testing to reach steady state. For this 

purpose, the Cryo-catalysis Hydrogen Experimental Facility (CHEF) was designed. 

  

 

Figure 7: (Left) Image of the Cryocatalysis Hydrogen Experiment Facility (CHEF). (center) Wire-frame 
drawing with CHEF dimensions. (right) Cross-sectional rendering of CHEF. 

Cryocooler 

 CHEF uses an inverted Gifford-McMahon (GM) cycle Sumitomo CH-204SFF cryo-cooler and HC-4E1 

helium compressor to achieve temperatures below the boiling point of hydrogen. With the addition of a 

Lakeshore 336 temperature controller, CHEF can operate from 8 to 300 K; a much wider range of 

temperatures than previous ortho-para catalyst testing systems.  
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 The system can reach a minimum temperature of 50K on the first stage and thermal shield, and 7.8K 

on the second stage with high vacuum and thermal radiation insulation. The second stage can absorb 9.0W of 

power (rated) at 20K, allowing CHEF to liquefy up to 1/8 L of hydrogen per hour. 

 Vacuum Chamber and Pumps 

 Isolating the cryostat from the environment with the use of a High Vacuum (HV) system is essential 

to maintaining cryogenic temperatures with the limited cooling capacity of the cryocooler. The HV system 

thermally insulates the cryostat with the use of thermal radiation shielding. Without the aid of an insulating 

vacuum, the necessary temperatures for the experiment would be unattainable with the available cooling 

power. 

 A High Vacuum is generally defined as any vacuum lower than 1x10-4 TorrVII. Below this point is the 

free molecular flow regime, where the mean free path of the molecules is larger than the container holding 

them. This means that pressure gradients no longer govern flow, and instead further pumping relies on 

molecules randomly finding their way to the pump opening. Convection is effectively eliminated as a heat 

transfer path without bulk fluid motion in the chamber.  

Achieving HV requires a series of specialized pumps. CHEF uses two pumps, a roughing pump and a 

turbomolecular pump. The roughing pump is a Leybold Trivac D-60B rotary vane pump. The D-60B is used 

first to bring the chamber down to a medium vacuum (1 to 1x10-3 Torr), at which point the turbomolecular 

pump, located in series between the chamber and the roughing pump, takes over. The Varian Turbo-V 81-M 

turbopump traps molecules that hit the turbine blades spinning at up to 81,000 rpm, pushing them 

downstream towards the roughing pump. When combined with the cryo-pumping effect of the cryostat, the 

chamber can reach an ultimate pressure of 2.8x10-7 Torr. Pressure is measured using a Varian model FRG-700 

                                                             
VII 760 Torr is one atmosphere; space is around 1x10-9 Torr. 
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Inverted Magnetron Pirani Gauge. The FRG-700 is a wide range gauge capable of measurement between 

5x10-9 to 1000 mbar with accuracy of ±30% of measurement.  

The roughing pump is turned on and off via a power switch opening and closing the 3 phase 208V 

power lines. The turbomolecular pump, vent valve, and vacuum gauge are controlled via the Turbo-V 81-AG 

rack controller. The turbo can be operated directly through the controller or using the T-Plus software 

installed on a computer, however pressures must be read on the controller’s display. 

Hydrogen Flow Management 
 

 Hydrogen can react violently with the oxygen in the air from 4–80 % concentrations, so it is therefore 

important to manage hydrogen in a safe manor and with fuel and oxidizer isolated. For this reason hydrogen 

in the lab is stored in low pressure reservoirs before it is introduced into the experiment, and all components 

must pass a helium leak test.   

The majority of connections in the system are ¼ brass NPT pipe fittings using ¼ copper tubing and 

compression fittings for longer expanses. This is the same both outside and inside the cryostat, except copper 

tubing is joined using metal face-seal VCR fittings brazed on to the ends of the tube. This creates a near 

perfect seal and is not as sensitive to temperature cycling as the compression fittings. 

 To begin an experiment on a new catalyst material, hydrogen gas from the reservoir is slowly 

introduced into the condenser which is being maintained near 20K, filling it to a maximum pressure of 50psig. 

As the hydrogen liquefies, the pressure in the condenser drops and hydrogen is cryopumped from the 

reservoir. When the reservoir has been drained to atmospheric pressure, it may be necessary to refill the 

reservoir and repeat this process until a significant volume (~1.5L) of liquid hydrogen has been condensed. 

To ensure that all of the liquid hydrogen has converted to parahydrogen in the condenser, active 

catalyst contained in a cylindrical mesh container is suspended within the condenser. As the hydrogen vapor  
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Figure 8: CHEF Piping and Instrument Diagram (P&ID) 

cools, the molecules are continuously exposed to the catalyst ensuring that equilibrium concentration is 

maintained as it is condensed. 

Once ready to begin testing, the hydrogen condenser is pressurized by raising the temperature via 

the condenser heater to increase the vapor pressure of the hydrogen. This pressure is then used to drive 

hydrogen flow back to the hydrogen reservoir, or out the vent to the laboratory’s fume hood through the 

reactor bed. 

The hydrogen passes over a thermal conductivity probe that is used to determine the ortho-para 

composition at the exit of the reactor bed. The gas then flows through a length of tube to warm the hydrogen 

from 90K to room temperature before reaching the differential pressure mass flow controller. 

Thermal based mass flow controllers would not be suitable for independent mass flow measurement 

because the thermal properties of the hydrogen are dependent on ortho-para composition. For this reason, 
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the Alicat™ MC-20SLPM was chosen to measure and automatically control gas flow. The Alicat™ flow meter is 

unique in that it uses small pressure differentials to calculate mass flow rate, allowing measurement 

independent of composition. 

Parahydrogen-Orthohydrogen Conversion Reactor 

 A unique reactor design was necessary for validating improvements in cooling capacity using para-

orthohydrogen conversion catalysts. Basic requirements for the reactor in CHEF include: 

 Interchangeable catalysts 

 Non-catalytic, insulating walls 

 Helium leak-tight construction 

 Imbedded heater to create reactor temperature gradient 

 In-flow temperature sensors before and after catalyst bed 

 Thermal conductivity probe in flow at the reactor exit 

To meet these requirements, the reactor chamber was designed and constructed using brass NPT 

pipe fittings. Brass has been shown in previous experimental systems in literature to be minimally catalytic, 

and PTFE sealed pipe connections were experimentally verified to be helium leak tight at cryogenic 

temperatures. Because the pipe fittings can be quickly disassembled and reassembled, the catalyst can be 

easily changed and sensor repairs can be done relatively simply.  

The catalyst chamber itself is a 5 inch section of standard ½ inch pipe with male threads. The 

downstream end of the packed bed reactor is capped with a 100 mesh screen preventing the catalyst 

material from escaping, but still allowing flow of hydrogen gas. The other end uses a removable synthetic 

filter to allow the catalyst material to be changed. At the inlet and outlet of the reactor chamber are platinum 

RTD’s to measure the hydrogen gas temperature. Figure 9 shows an image and conceptual rendering of the 

reactor bed. 
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Figure 9: (Left) Image of the catalyst bed in CHEF. (Right) Cross-sectional rendering of the flow through the 

reactor bed. 

Just before the hydrogen leaves the reactor, it passes over the hot wire thermal conductivity probe 

to measure the composition of the two different allotropes of hydrogen. In previous experiments, it was 

common to batch-sample the hydrogen gas to analyze the ratio of orthohydrogen to parahydrogen extracted 

from a continuous process. Thermal conductivity cells (as described by Stewart et. al (7)) make use of the 

difference in thermal properties between the two allotropic forms. Figure 10 shows the difference in thermal 

conductivities between normal hydrogen (3:1 ortho to para) and pure parahydrogen. Devices like those used 

by Stewart and Hutchinson (8) required a sample of gas be taken once steady state in the reactor had been 

reached. For this experiment, an in-situ, instantaneous method of measuring the hydrogen allotrope 

composition was desired. To accomplish this, a constant temperature hot wire probe was used. 
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Figure 10: Thermal conductivity as a function of temperature for parahydrogen and normal hydrogen. 

The basic principles that allow composition to be measured this way are based on an energy balance 

between the heating of the wire with convection heat transfer into the hydrogen. The power dissipated in  

the wire is straight forward and is given by Ohm’s law.  

𝑄𝑡𝑜𝑡𝑎𝑙 =
𝐸2

𝑅
 

 [9] 

 An energy balance then relates the power dissipated to heat transfer through convection. 

𝑄𝑡𝑜𝑡𝑎𝑙 = Nu𝑘𝜋𝐿𝑤(𝑇𝑤 − 𝑇∞) + 𝑄𝑐𝑜𝑛𝑑 + 𝑄𝑟𝑎𝑑   

  [10] 
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In the energy balance, heat loss from the wire due to conduction through the wire supports and radiation 

to the surroundings must also be considered. However since they are independent of fluid properties, 

conduction and radiation losses remain constant regardless of parahydrogen-orthohydrogen concentration. 

In addition to the thermal conductivity (k) in eqn. [10], the Nusselt number (Nu) is also a very important. For 

small cylinders with very large length to diameter ratios, it is valid to use Kramer’s law, which matches 

empirical data well over a very wide range of Reynolds numbers (Re). (9) 

 Nu = 0.42Pr1/5 + 0.57Pr1/3Re1/2  

 [11] 

Because the Prandtl number (Pr) is also dependent on k and the heat capacity, the Nusselt number must also 

be considered. If equations [9] and [10] are combined and re-arranged, the variables that are dependent on 

the composition can be written in terms of the output voltage from the hot-wire circuit. 

Nu𝑘 =
𝐸2

𝑅𝜋𝐿𝑤(𝑇𝑤 − 𝑇∞)
 

    [12] 

Using a software computer algorithm and properties of parahydrogen and normal hydrogen, it can be 

shown that the product Nu-k is approximately linear with respect to the parahydrogen-orthohydrogen 

composition. Since composition is proportional to Nu-k, a simple relation between the thermal conductivity 

probe voltage output and composition can be written that requires only two calibration points at 99.8% 

parahydrogen (Ep), and normal hydrogen (En). 

𝑥𝑜 = 0.75
𝐸2 − 𝐸𝑝

2

(𝐸𝑛
2 − 𝐸𝑝

2)
  

   [13] 
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 Much like other devices used to measure thermal conductivity of a gas, the sensor implemented in 

CHEF uses a tungsten filament heated above the ambient gas temperature. In this case however the sensor is 

placed in the flowing hydrogen gas as it leaves the reactor bed. This presents additional challenges in that the 

variable flow rate of the gas greatly influences the heat transferred to the hydrogen, and must be 

compensated for. To account for this, calibration was done at each flow rate of interest for both normal 

hydrogen and parahydrogen. Although some manufacturers do sell gas composition sensors like the one 

described, none were available that were designed for cryogenic gases, nor were they programmed to detect 

the difference between hydrogen’s allotropic forms. For these reasons, the decision was made to design a 

custom hot wire control circuit. 

 Hot wire circuits for thermal conductivity or flow rate measurement can be either constant 

temperature or constant current. Constant current hot wires supply a uniform current at all times through 

the sensor, as the thermal conductivity of the gas drops, the wire heats up and its resistance increases 

resulting in a measureable voltage increase across the sensor. The advantage to this design is the simplicity of 

the control and measurement circuit. However, because the temperature of the wire changes with variations 

in flow rate and thermal properties, calibration and determination of the composition becomes overly 

complex. Constant temperature sensors instead maintain a constant wire resistance (and therefore 

temperature) using a Wheatstone bridge and a feedback loop. The voltage across the bridge necessary to 

maintain the wire temperature can then be measured and related to the composition. Because the wire is 

maintained at a constant temperature, the calibration of the sensor and the composition measurement are 

straight forward. It was decided that the extra effort be spent designing the more complicated constant 

temperature hot wire circuit to simplify calculations during experimental runs. 

 The hot wire control circuit can be broken down into three main components: The Wheatstone 

bridge, the differential amplifier, and the current amplifier. A Wheatstone bridge is a common circuit in 

measurement systems used to convert a change in resistance to a voltage. Figure 10 shows the layout of a  
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Figure 11: Diagram of a Wheatstone bridge. 

Wheatstone bridge. When the resistor values of the bridge satisfy  
𝑅1

𝑅2
=

𝑅3

𝑅4
 then the potential between the 

two legs 𝐸 = 0, however when one of the resistors changes, the change can be correlated to a change in the 

potential E. In the case of the constant temperature circuit, R4 is the tungsten filament located in the fluid 

flow, and the bridge is used to detect when the hot wire’s temperature deviates from the temperature set 

using a potentiometer for R2. This potential however is a differential voltage with a DC offset from ground, 

and cannot be used directly by a current amplifier. 

 To combine the two voltages into a single potential relative to ground, an instrumentation amplifier 

is used. Although instrumentation amplifiers do come in monolithic packages, because LM324 quad amplifier 

chips were on hand, a custom instrumentation amplifier was assembled. The output of this circuit is then 

delivered to the current amplifier. 

 Although the instrumentation amplifier has enough gain to step the potential to the necessary 

voltage for the Wheatstone bridge, the amplifiers in the LM324 cannot supply the current necessary to 

maintain the temperature of the wire. For this purpose a TCA0372 duel amplifier chip capable of supplying up 

to one amp of current at 12 volts is used to supply the Wheatstone bridge and power the hot wire.  
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When the tungsten filament’s resistance drops below the set point (temperature too low), the circuit 

acts by increasing the voltage across the bridge, increasing the heat output of the wire. As the wire heats up 

above the set point, the circuit compensates by reducing the voltage. This results in a steady equilibrium 

voltage output that is dependent on the power dissipated into the fluid and can be measured using the NI 

DAQ. Because the flow rate is determined independently, the voltage can be directly correlated to the 

composition of the hydrogen.  

 

 Figure 12: Detailed circuit board schematic for the control and measurement circuit.  
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Electrical and Measurement System 

 The ability to accurately control the temperatures within the system is the major attribute that 

separates CHEF from previous catalyst experiments. To accomplish this, CHEF uses a LakeShore 336 

Temperature Controller. The LakeShore Controller can monitor up to four temperature sensors as well as 

control two heater outputs. Three different temperature sensor types are used in CHEF: two platinum RTD’s, 

one silicon diode, and one Cernox™ sensor.  

Platinum Resistance Temperature Detectors (RTD) utilize changes in a metal’s electrical resistance 

with temperature. Platinum RTD’s remain sensitive over a wide range of temperatures (20K to 1235K) and 

follow a standard curve. Additionally, platinum RTD’s are available in very small sensor packages, reducing 

error from self-heating, thermal response time, and increasing sensitivity. This combination of attributes 

makes Platinum RTD’s ideal for measuring temperatures within the catalyst reactor. Two GP-100 Platinum 

RTD’s from Cryogenic Control Systems inc. are connected to inputs C and D on the temperature controller to 

measure the temperature of the hydrogen gas at the inlet and outlet (respectively). Silicon Diodes are often 

considered to be the best choice for general cryogenic measurement. Between 30 and 100K, they have a 

calibrated tolerance of ±0.2K. Silicon Diodes are also sensitive over a wide range, but unlike Platinum RTD’s, 

are available in packages that are easily mounted to surfaces in a vacuum. For this reason, a silicon diode 

temperature sensor from Cryogenic Control Systems Inc. was chosen for monitoring the thermal shield 

temperature. Cernox™ temperature sensors are thin film resistance sensors that are highly sensitive at very 

low temperatures making Cernox™ temperature sensors  ideal for monitoring the lowest temperatures in the 

system, which occur in the hydrogen condenser attached to the second stage of the cryo-cooler. The 

Cernox™ sensor in CHEF is mounted at the bottom of the hydrogen condenser on the flange connecting the 

condenser to the cold head of the cryocooler. Figure 12 shows the location of each sensor in the experiment. 

Because there are no temperature settings on the cryocooler itself, heaters are used to maintain 

temperature. A PID loop using temperature sensor inputs at specific locations allow the LakeShore 336 to 

maintain precise control over two key temperatures within the system. The first heater is mounted at the 
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base of the hydrogen condenser. This heater is used to precisely control the temperature and vapor pressure 

within the condenser. This is necessary to prevent the system from dropping below atmospheric pressure, 

and maintain enough positive pressure to drive flow through the reactor. The heater was selected to provide 

up to 10W of power at the maximum compliance voltage (50V) of the controller. 

 

 

Figure 13: Wiring schematic for CHEFs measurement and control systems. 
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The heater imbedded within the reactor can provide a maximum of 27.5W. The power to the heater 

is regulated to maintain a constant outlet temperature. The control circuit is limited by the same 50V 

compliance voltage as the first heater. 

As with many modern experiments, a large majority of the measurements are based on electrical 

signals and computer data acquisition. To gather the data, CHEF uses a National Instruments Modular DAQ 

(NI-cDAQ-9172 Chassis) with a NI-9201 analog input module. A custom LabVIEW Virtual Instrument was 

programmed to track, and log the data, as well as control many subsystems. The front panel for the program 

is shown in figure 14. 

 

Figure 14: CHEFs LabVIEW VI front panel 
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Ionex™ O-P Catalyst 

To benchmark CHEF and validate its measurement capabilities, commercial grade Ionex™ 

orthohydrogen-parahydrogen conversion catalyst was selected for the experiment. Ionex™ catalyst was 

developed for use specifically in hydrogen liquefaction processes to ensure that the liquid is delivered to the 

customer as pure parahydrogen to eliminate self-heating due to natural conversion. The catalyst is a 30-50 

mesh paramagnetic hydrous ferric oxide (Fe2O3) powder. Although many different catalysts have been 

developed, Ionex™ was chosen because it is readily available, safe to handle, and cost effective. Figure 15 

shows the catalyst compared with aluminum powder. The aluminum powder does not catalyze the reaction 

and so can be used for direct comparison to a system without conversion, as well as calibration runs for the 

hot wire composition probe. 

 

Figure 15: (Left) Ionex™ O-P catalyst compared with (Right) non-catalytic aluminum powder. 
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Experimental Method 

Safely Working with Hydrogen 

 Before any experiment with hydrogen is designed or built, it is essential that safety is made the 

number one priority. Because of hydrogen’s wide flammability range, small leaks of hydrogen out, or air into 

the experiment could be extremely dangerous. To mitigate the risk, several safety systems are installed and 

procedures are carefully followed to ensure the safety of researchers working with CHEF. 

 CHEF is protected from overpressure via two safety relief valves, one for the reservoir and another 

for the condenser. If a pressure above 200 psig is reached, the valves will vent the hydrogen into the fume 

hood. Additionally, due to the large volume of the reservoir, high pressure hydrogen in the condenser can be 

internally vented and the pressure relieved without bleeding in to the fume hood. All vented hydrogen exits 

through non-conductive plastic tubing to prevent sparking and ignition at the exit of the vent tube. Before 

hydrogen is ever introduced to the system, all fittings are leak checked. 

 Using a helium leak detector, NPT, compression and VCR fittings are tested for potential leaks. 

Because monatomic helium is smaller than diatomic hydrogen, any connection that does not allow helium 

through will also be hydrogen leak tight. The system is tested by pressurizing to 25-50 psig with helium, using 

a sniffing probe to detect any leaks. If any component fails, the system is depressurized and the fitting is 

fixed. Once the CHEF is verified leak free, the system can be purged for testing. 

 By purging the system with inert gas, the chance of a combustible mixture forming within the system 

is significantly reduced. Nitrogen is the preferred gas for this task because it is inert and much cheaper than 

helium. Purging and evacuating the system twice is sufficient to ensure that no oxygen remains in CHEF’s 

hydrogen system.  

 Finally, the system is continuously monitored to ensure everything is operating normally. All data 

logging and controls in the LabVIEW VI are available via remote desktop connection, allowing researchers to 
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monitor the system from anywhere, or receive alerts when drastic changes occur. This is especially important 

for cool-down, fill, and warm-up operations, which can take more than a day to complete. 

Cool-Down 

 To prepare CHEF for hydrogen liquefaction, the system must be brought down to temperature. But 

before starting the cryocooler, an insulating vacuum must be pulled within the chamber. 

 With all external ports closed and the lid down, the large rotary vane pump is started and a rough 

vacuum is pulled. The exhaust is plumbed in to the fume hood to prevent oil vapors from building up in the 

laboratory. Once a pressure below 10 Torr is reached, it is safe to start the turbomolecular pump. 

 Once a vacuum below 10-4 Torr has been reached, the cryocooler can be started. Before turning on 

the compressor however, the liquid cooling system should running and supply water entering the compressor 

must be below 75°F. With the cooler running, the vacuum pressure will drop even further due to the addition 

of cryopumping to an ultimate chamber pressure of 2.2x10-7 Torr. With full heat shield and condenser 

mounted on the second stage, the system takes roughly 12 hours to reach a minimum temperature of about 

11.5K. 

Filling Procedure 

 After the system has reached the operating temperature, hydrogen is slowly introduced to the 

condenser through a needle valve. As the hydrogen from the gaseous reservoir enters the condenser, it cools 

and liquefies, reducing the pressure within the system and drawing more hydrogen from the reservoir. In this 

way, hydrogen can be cryopumped from the reservoir effectively until a large enough volume of liquid 

hydrogen to perform an experimental run is reached. 

 It has been determined that in order to properly pre-cool a reactor of this size and allow the system 

enough time to reach steady state at each different flow rate, A volume of about 2 liters (~0.15kg) is 
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necessary to complete a data set without refilling. Reaching this volume takes about a 12 hours, requiring the 

reservoir to be refilled as needed. 

 To ensure all liquid hydrogen converts fully to the para form, the hanging cylindrical catalyst dipper 

shown in Figure 16 below is suspended within the condenser. Because the hydrogen is not agitated however 

an incubation period is required to ensure that complete conversion can occur. After filling is finished, 24 

hours is given for the hydrogen to completely convert before experimental runs are performed. 

 

Figure 16: Image of the suspended catalyst dipper probe to ensure complete conversion to parahydrogen 

in the condenser. 

Reactor Precooling 

 Before any data can be collected in an experimental run, the reactor and vapor lines must reach 

steady-state experimental conditions. Because the reactor is suspended and not thermally mounted to the 

second stage, the system cool down and liquefaction only bring the reactor temperatures down to about 

170K. For this reason it is necessary to run hydrogen through the reactor to pre-cool it to operating 

temperatures. 
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 Hydrogen that passes through the reactor can either be directed back in to the gaseous reservoir, or 

out through the vent. In order to drive the hydrogen into the reservoir a continuously increasing 

overpressure in the condenser must be maintained, and because thermal conductivity measurements are 

sensitive to large changes in pressure, this is not an ideal operating condition for experimental runs. 

Hydrogen can only be captured during reactor precooling to prevent unnecessary venting, keeping in mind 

that the system pressure should not exceed 100 psi. 

 The process is started by increasing the set-temperature of the condenser to increase the vapor 

pressure to that above the pressure currently in the reservoir. Opening the valves back to the reservoir 

through the reactor and entering a set point of 20 SLPM on the mass flow controller should then begin the 

flow of cold hydrogen vapor. It is left to the researcher’s judgment on whether to continue filling the 

reservoir or to send the hydrogen to the fume hood to the vent. Once the reactor outlet temperature 

reaches 90K, the reactor heater PID controls should be turned on and the system allowed to stabilize. CHEF 

should now be ready to begin running experiments. 

Experimental Procedure 

 Beginning with the lowest flow rate (2.5 SLPM), change the flow rate set point in LabVIEW and adjust 

the condenser temperature set point such that a constant pressure between 5 and 7 psig is maintained. With 

hydrogen flowing, it is safe to connect the thermal conductivity probe to the control board. A steady green 

and amber light indicate the circuit is measuring (if only the green comes on, press the reset button or 

disconnect and reconnect the BNC cable). Continuous data may be taken but steady state should be observed 

before taking single averaged data. 

 Reaching full steady state requires about 30 minutes at each flow rate due to the thermal mass 

within the reactor and researchers should wait until reactor power is steady and no fluctuations or large 

period oscillations are observed in temperatures. Then a 100-data-point averaged steady state point can be 

recorded using the LabVIEW VI and the researcher can move to the next flow rate. 
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 This procedure is repeated for each flow rate until all desired points are measured. The averaged 

data points record nearly all system parameters (excluding liquid volume) and allow for post experimental 

analysis of catalyst activity and heat required for conversion. 

Shutdown and Warm-up 

 Before the cryocooler can be safely shut down, all hydrogen within the condenser should be vented. 

To drive the hydrogen out, the condenser set temperature can be set above its boiling point and hydrogen 

vented either to atmosphere or to the reservoir. A sharp change in condenser temperature indicates that all 

the liquid hydrogen has evaporated. If the hydrogen was being vented to atmosphere, the vent valve should 

be closed and the reservoir valve opened to allow the hydrogen warming in the condenser to expand slowly 

into the larger reservoir volume. 

 After shutting down the cryocooler, the heaters can be used to bring the system back to room 

temperature faster. The vacuum system must remain running until the lowest temperature in the system is 

above 273K (freezing point of water) to prevent condensation from forming. 

 With the system back up to room temperature, the vacuum system can be shut down and 

atmosphere slowly reintroduced to the chamber. Once the CHEF is back to atmospheric pressure, the upper 

chamber can be lifted to access the condenser and reactor to prepare for the next experiment. 

Activating the Catalyst 

 Ionex™ O-P catalyst is an Iron(III) Oxide powder that requires activation to remove contaminants 

from catalyst sites that reduce effectiveness. The catalyst can become deactivated from prolonged exposure 

to moisture in the air. 

 When the catalyst is purchased from Sigma-Aldrich, it is delivered with an unknown level of 

contamination and must be activated to ensure consistent performance. The catalyst can be activated by 
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heating and flowing dry nitrogen over the catalyst. Results from Essler (11) provided an effective procedure 

for activating the catalyst within the reactor. 

 Using the imbedded heater, the catalyst was heated to 353K and nitrogen was slowly bled through 

the reactor with a mean pressure of 0.01 to 0.05 MPa for 16 hours. Because the catalyst can be activated 

within the reactor, it is not exposed to atmosphere before experimental runs and can be tested with 

minimum contamination. 

Results and Raw Data 

Calibration 

 Although the heat transfer from the reactor and the thermal conductivity probe can be estimated 

using some simplifying assumptions, it is more effective to use calibration points of pure parahydrogen and 

normal hydrogen. 

 Without the catalyst dipper in the condenser, the hydrogen converts at a very slow and consistent 

rate. By liquefying and immediately running an experiment using non-catalytic aluminum particles, a 

calibration curve for a known composition of hydrogen can be created. Results for a 27.8 % parahydrogen 

mixture (near normal composition) are provided in Table 1.  

Mass Flow Rate 
(kg/min) 

Condenser 
Temperature 

(K) 

Inlet 
Temperature 

(K) 

Outlet 
Temperature 

(K) 

Reactor 
Power (W) 

Reactor Pressure 
(psig) 

Bridge 
Voltage (V) 

±0.000001 ±0.1 ±0.25 ±0.25 ±0.125 ±0.1 ±0.01 

0.000206 21.9 52.8 90.0 2.7 7.3 7.07 

0.000412 22.2 44.6 89.9 3.5 6.8 7.49 

0.000618 22.6 35.4 89.9 4.9 6.5 7.78 

0.000824 22.9 29.7 89.9 7.2 6.4 8.02 

0.001029 22.8 26.8 89.8 9.6 6.1 8.23 

0.001235 22.7 25.2 89.8 11.8 5.4 8.40 

  

Table 1: 27.8% Parahydrogen calibration data 
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 After replacing the catalyst dipper back in to the condenser, the hydrogen fully converts to 

parahydrogen form. Again running the experiment with the non-catalytic aluminum, a calibration curve for 

99.9% parahydrogen is created. Additionally, the data for reactor heater power required to heat the 

parahydrogen is the metric of comparison that can be used to justify the inclusion of para-ortho catalyst in 

upper stage rocket fuel systems. 99.8 % parahydrogen calibration data is shown in Table 2. 

Mass Flow Rate 
(kg/min) 

Condenser 
Temperature 
(K) 

Inlet 
Temperature 
(K) 

Outlet 
Temperature 
(K) 

Reactor 
Power (W) 

Reactor 
Pressure (psig) 

Bridge 
Voltage (V) 

±0.000001 ±0.1 ±0.25 ±0.25 ±0.125 ±0.1 ±0.01 

0.000206 21.7 55.7 90.0 1.8 5.9 7.43 

0.000412 22.1 39.6 90.0 4.1 5.9 7.88 

0.000618 22.3 30.6 90.0 6.5 5.1 8.19 

0.000824 22.7 26.7 90.0 8.9 6.1 8.47 

  

Table 2: 99.8% Parahydrogen calibration data 

 Arbitrary composition measurements at given mass flow rates can now be completed using the 

parahydrogen and normal hydrogen bridge voltages as interpolation points. 

Non-Activated Catalyst 

 Before the catalyst was activated, it was decided that a test with the Ionex™ O-P catalyst straight 

from the manufacturer would be a useful measurement of the importance of activation. The test would also 

verify that the composition measurement probe and heater measurements were sensitive to small changes 

in composition and conversion rates such that useful data could be collected. 

 Two tests were run. One test with the catalyst as it had been sitting in storage for the past 18 

months without any form of activation. Without changing anything in the system, two weeks later the same 

test was repeated. Because the catalyst had been sitting under vacuum for greater than one week however, 

very slight activation was expected. 



36 
 

 The data confirmed that although non-activated catalyst was used, at low flow rates a significant 

portion of the hydrogen was converting from the para to ortho form. During the experiment, as the flow rate 

was modified between data points, the composition could be seen lagging as the conversion rate changed 

between the two space velocities, a phenomena not seen with non-catalytic aluminum particles. Additionally, 

the second run clearly showed a slight improvement with a low level of activation, indicating that a direct 

comparison between similar performing catalysts could be possible. The data for both runs can be seen in 

Table 3. 

 

April 15th, 2013 

Mass Flow Rate 
(kg/min) 

Condenser 
Temperature 

(K) 

Inlet 
Temperature 

(K) 

Outlet 
Temperature 

(K) 

Reactor 
Power (W) 

Reactor Pressure 
(psig) 

Bridge Voltage 
(V) 

±0.000001 ±0.1 ±0.25 ±0.25 ±0.125 ±0.1 ±0.01 

0.001029 22.9 25.1 88.5 11.6 6.7 8.64 

0.001235 22.6 23.4 88.5 13.7 4.8 8.82 

0.000206 21.8 55.5 90.2 2.4 7.4 7.30 

0.000412 22.3 41.0 89.5 4.9 7.7 7.81 

0.000618 22.7 32.3 89.2 6.8 7.7 8.16 

0.000823 23.0 28.0 88.8 9.1 7.6 8.43 

April 28th, 2013 (slight activation) 

Mass Flow Rate 
(kg/min) 

Condenser 
Temperature 

(K) 

Inlet 
Temperature 

(K) 

Outlet 
Temperature 

(K) 

Reactor 
Power (W) 

Reactor Pressure 
(psig) 

Bridge Voltage 
(V) 

±0.000001 ±0.1 ±0.25 ±0.25 ±0.125 ±0.1 ±0.01 

0.000206 21.5 55.1 90.0 2.3 6.0 7.26 

0.000412 21.9 38.8 90.0 4.9 5.8 7.74 

0.000618 22.4 29.4 90.0 7.4 6.1 8.08 

0.000823 22.6 25.6 90.0 9.8 6.3 8.36 

0.001029 22.5 23.6 89.7 12.2 4.8 8.56 

0.001235 22.6 22.6 88.5 14.6 5.9 8.80 

  

Table 3: Non-activated catalyst data 
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Activated Catalyst 

 To conclude the experiments, a test with activated Ionex™ catalyst was completed. The 

measurements in Table 4 clearly show significant improvement in conversion rate over the non-activated 

catalyst. Not only was the low flow rate closer to equilibrium concentration, but more complete conversion 

was measured at higher flow rates. The reactor power measurements also clearly indicated that this 

conversion resulted in significant increases in cooling capacity. Data shown in table 4. 

Mass Flow Rate 
(kg/min) 

Condenser 
Temperature 

(K) 

Inlet 
Temperature 

(K) 

Outlet 
Temperature 

(K) 

Reactor 
Power (W) 

Reactor Pressure 
(psig) 

Bridge Voltage 
(V) 

±0.000001 ±0.1 ±0.25 ±0.25 ±0.125 ±0.1 ±0.01 

0.000206 21.8 54.7 90.0 2.5 7.3 7.23 

0.000412 22.2 38.4 90.0 5.6 7.5 7.70 

0.000618 22.6 29.5 89.9 8.7 7.5 8.02 

0.000824 23 25.8 89.9 11.7 7.4 8.27 

0.001029 22.9 23.9 89.8 14.7 5.6 8.47 

 

Table 4: Activated catalyst data 

Error and Uncertainty 

 For each measurement, all bias uncertainty in the chain from the instrument to data logging was 

accounted for. Each of these errors is then carried through using the uncertainty analysis functionality in EES 

and is presented in the tables and in error bars on plotted results. 

 Random error is eliminated by averaging a total of one hundred steady state measurements for each 

data point. Because random error for the noise in the custom hot wire circuit could not be easily determined, 

an arbitrarily large number of averaged points was chosen to ensure it could be safely neglected. 
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Analysis and Conclusions 

Effect of Space Velocity 

 The amount of time the hydrogen interacts with the catalyst can be described by a quantity called 

space velocity. It is effectively the inverse of the total time a unit volume of hydrogen spends in the reactor 

and is given by the ratio of the volume flow rate of the gas to the total volume of the reactor and has units of 

one over time. Because the density of the hydrogen changes from one end of the reactor to the other, an 

average density is used to determine the volumetric flow rate. 

 

Figure 17: Sensor response vs. space velocity. Calibration curves are shown bounding the data with 

activated and non-activated catalyst in the middle. Lower points indicate more complete conversion. 
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Figure 18: Orthohydrogen fraction vs. space velocity. Activated catalyst produces higher concentrations of 

orthohydrogen at all space velocities, indicating better performance. 

The amount of hydrogen that can react is directly related to the amount of time in the reactor, so it 

is obvious that the lower the space velocity, the more conversion achieved. This trend is illustrated very 

clearly by the data collected. At low flow rates the hydrogen nearly reaches equilibrium concentration, and at 

high flow rates little conversion is achieved for the non-activated catalysts. 

 Figure 17 shows the results of the hot wire probe voltage plotted against space velocity for each of 

the calibration runs, and for activated and non-activated catalysts. Figure 18 presents the data directly in 

terms of orthohydrogen fraction using equation [13]. At low flow rates (low space velocities), both activated 
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maintains a relatively high performance level throughout the flow range, whereas the non-activated catalyst 

drops off at higher space velocities. 

Increase in Cooling Capacity 

 By comparing the power required to heat the pure, non-catalyzed parahydrogen to the test runs 

with catalyst, we can determine the increase in cooling capacity introduced with the addition of para-ortho 

conversion. The same trend as was observed in the composition measurement data can be seen here. Lower 

space velocities result in higher cooling capacity gains. 

 

Figure 19: Plot of increase in cooling capacity vs. space velocity for activated and non-activated catalyst. 
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capacity approaches the theoretical 50% increase over current passive cooling systems. It should be noted 

that as the space velocity decreases, the uncertainty increases significantly. This is due primarily to the 

uncertainty in the reactor power measurement. At the lower end of the tested flow rates, the reactor heater 

only required about 2.5W to maintain a constant 90K outlet temperature, but the uncertainty in the 

measurement was ±0.125W due to clipping that occurred in the measurement during data acquisition.  

Activated vs. Non-Activated Catalyst 

 It is clear that the catalyst significantly improved after activation, however even the non-activated 

catalyst showed significant increases in cooling capacity over current passive cooling. This indicates that 

inclusion of an o-p catalyst into a space stage fuel system will be robust, and can be a simple retrofit without 

adding costly testing and overly complex fabrication and installation procedures, yet still greatly improve on 

current systems.  

Conclusion 

 The research presented here clearly indicates that a passive hydrogen vapor cooling system can be 

greatly improved by taking advantage of parahydrogen to orthohydrogen conversion. The theoretical 

maximum of up to 50% increase in cooling capacity has been shown to be very possible and potentially 

achievable in a carefully designed system. Additionally, CHEF has been proven as a measurement facility, and 

two years after work began, it is ready to begin characterizing more O-P catalysts for use in passive cooling 

systems. 

Recommendations for Future Work 

 Although CHEF is capable of taking good data and running a wide range of experiments, there are a 

few upgrades that would improve the accuracy and widen the range of available test conditions. 
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1) Install a pre-converter into the condenser. 

Currently, the liquefying hydrogen in the condenser is exposed to catalyst through a dip probe (see 

figure 16). Although this is effective over a long incubation period, it relies on the self-mixing of the 

hydrogen to uniformly convert to pure parahydrogen. A much more effective approach would be to 

install a small pre-converter/reactor in the fill and drain tube within the condenser that the hydrogen 

would pass through both on the way in to the condenser, and back on the way out to ensure 99.8% 

parahydrogen is entering the experimental reactor. 

2) Add a second heater to the condenser. 

With the single 1/8” cartridge heater that was installed in the base of the condenser, only a 

maximum of 10.5W is available to drive the flow of hydrogen as it boils off, limiting the maximum 

flow rate during an experiment. Replacing this heater or adding a second identical cartridge would 

allow for a much wider range of flow rates to test better performing catalysts. 

3) Use an independent reactor power measurement shunt. 

An issue was discovered with the Lakeshore 336’s power output measurement when it was found 

that the data acquisition system was clipping one significant digit from the fraction of maximum 

power output that is sent to the labVIEW program. It may be possible to contact the manufacturer to 

get the issue resolved, however in the long term, an independent measurement shunt may be a 

more reliable and elegant solution. 
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