Fluid Propellant Selection

Franco Spadoni, Marshall Crenshaw, John Feiler, Andrew Doornink

How to Select Fluid Propellants

- 1. Pertinent Propellant Properties
- 2. Elimination Round
- 3. Propellant Comparison
- 4. Final Decision/Future Plans

Simplest Rocket Ever Liquid nuclear rocket Hydrogen heater nozzle

Falcon Heavy

Oxidizer/Fuel

- Liquid OXygen (LOX) and Rocket Propellant-1 (RP-1)
- RP-1 is highly refined kerosene
- Most common oxidizer/propellant combination

Details

- Most powerful operational rocket (only Saturn V more powerful)
- First stage uses three Falcon 9 cores (27 Merlin Engines)
- Newest rocket in use by SpaceX (first launch sometime this year)
- Falcon Heavy animation: (https://www.youtube.com/watch?v=4Ca6x4QbpoM)

Ideal Fuel/Oxidizer

- Low Freezing Point: Allows rocket to operate in cold weather
- **High Specific Gravity:** Denser propellants provide larger mass per volume ρ_{av} = average density ρ_o = density of oxidizer ρ_f = density of fuel (7-2) $\rho_{av} = \rho_o * \rho_f * r + \rho_o * \rho_f$
 - Good Stability: No chemical deterioration/decon ρ_{av} ρ_{f*r+ρ₀} storage
 - **Heat Transfer Properties:** High Specific heat, high thermal conductivity, and high boiling or decomposition temperature (Section 8.5)
 - Small Temperature Variation of Physical Properties: It is difficult to predict your system with large property difference with temperature changes
 - **(Optional) Adequate Pumping Properties:** Low vapor pressure propellants allow for more effective pump designs; lower viscosity propellants are easier to pump

Propellant Properties

- Economic Factors: Availability & Cost of Propellants
- **Performance of Propellants:** Propellants can be compared on the basis of:

$$\begin{array}{lll} \text{Specific Impulse (I}_{sp}) & I_{sp} = \frac{F}{\dot{m} * g_0} & \text{(2-6)} & \textbf{F: Thrust Force} \\ & \textbf{g}_0\text{: Gravity Constant} \\ \text{Exhaust Velocity (v}_e) & \text{(2-17)} & \textbf{m(dot)}\text{: Mass Flow Rate of Propellant} \\ & v_e = I_{sp} * g_0 & \textbf{p}_1\text{: Chamber Pressure} \\ \text{Characteristic Velocity (C*)} & \text{(2-18)} & \textbf{A}_t\text{: Area at Throat} \\ \end{array}$$

Other engine parameters: (f $c^* = \frac{p_1 * A_t}{\dot{m}}$ nance parameters (Ch 4), chemical combination parameters (Ch 5), etc.)

Possible Propellant Hazards

Common Physical Hazards:

Corrosion: Certain propellants can corrode when exposed to certain materials and produce a gaseous reaction product that can damage parts of the rocket

Explosion Hazards: Some propellants are unstable and will detonate under certain conditions of impurities, temperatures, and shock. Others may detonate immediately when exposed to an oxidizer **Fire Hazards:** Many oxidizers will start a chemical reaction with organic compounds and/or exposed to air

Material Compatibility: Several propellants have only specific materials that can house the propellants properly

Health Hazards: Many propellants are poisonous in gaseous/liquid form on their own while others are harmful when reacting with an oxidizer; all above hazards can also cause harm if handled improperly

Elimination Process

- No toxic propellants
 - "Toxic propellants would require breathing apparatus, special storage and transport infrastructure, extensive personal protective equipment, etc." - IREC Rules
- Cryogenic propellants
- Expensive/inaccessible
- Poor properties (melting/boiling point, corrosive, low energy density)
- Environmental concerns

Eliminated Propellants

- Hydrazine (all types)
 - Highly hazardous, violates competition rules
 - Toxic, spontaneous ignition in air, carcinogenic
 - High freezing point (34 F)
- Liquid Fluorine
 - Highly toxic, Highly reactive
 - Produces Hydrofluoric acid
- Liquid Hydrogen
 - Low boiling point (-423.2 F)
 - Expensive
 - Low shelf life

Eliminated Propellants Cont.

- Nitrogen Tetroxide
 - Used as Hydrazine oxidizer
 - Form strong acidic compounds when mixed with water
 - Highly toxic, carcinogenic
- Methane
 - Low boiling point (- 258.7 F)
 - Low flash point (- 306 F)
 - Small gap between boiling and freezing

Proton-M

- Russian made
- Hydrazine (UDMH)
- Nitrogen Tetroxide
- Reported to cause acidic rain after launch
- 115 launches, 9 failures
- May 14, 2012, failure 17 seconds after launch in Kazakhstan
- Created toxic cloud comprised of unspent fuel

Marder, Jenny. "Russian Rocket Explosion Releases Toxic Fuel Cloud." *PBS.com.* PBS, 3 July 2013. Web.

Top three fuels

Ethanol

Kerosene

Gasoline

Ethanol

 $C_2H_5OH + 3O_2 --> 2CO_2 + 3H_2O; -\Delta H_c = 1236 \text{ kJ/mol}$

Density: 0.789 g/cm³

Melting Point: -114 °C

Flash Point: 16 °C

Specific Heat: 2.438 J/(g K)

http://en.wikipedia.org/wiki/File:Ethanol-3D-balls.png

V-2

LOX/Ethanol

Led to development of PGM-11 Redstone

Kerosene

 $2C_{12}H_{26}(I) + 37C_{2}(g) \rightarrow 24CO_{2}(g) + 26H_{2}O(g); -\Delta H^{\circ} = 6,779 \text{ kJ/mol}_{(Approximate reaction)}$

Density: 0.81 g/cm³

Melting Point: -43 °C

Flash Point: 58 °C

Specific Heat: 2.01 J/(g K)

http://en.wikipedia.org/wiki/File:Dodecane-3D-balls-B.png

Rocketdyne F-1

Saturn V First Stage

LOX/Kerosene (RP-1)

Most powerful single-chamber liquid-fueled rocket engine ever developed

http://en.wikipedia.org/wiki/File:S-IC_engines_and_Von_Braun.jpg

Gasoline

$$2 C_8 H_{18} + 25 O_2 = 18 H_2 O + 16 CO_2$$
; $-\Delta H^{\circ} = 5,074.9 \text{kJ/mol}$

Density: 0.81 g/cm³

Melting Point: -43 °C

Flash Point: 58 °C

Specific Heat: 2.22 J/(g K)

http://en.wikipedia.org/wiki/File:Octane-3D-balls-B.png

Nell

First liquid propellant rocket LOX/Gasoline

http://en.wikipedia.org/wiki/File:Goddard_and_Rocket.jpg

Top three oxidizers

Hydrogen Peroxide

Gaseous Oxygen

Liquid Oxygen

Fuel Property Comparison

Fuel	ρ (g/cm ³)	μ (Pa*s)	Flash (°C)	Auto (°C)	Boiling (°C)
Ethanol	0.789	0.001074	8.889	363	78
Kerosene	0.82	0.00075	43.33	220	177-187
Gasoline	0.726	0.0004	-42.8	257	26

Fuel Performance Comparison

Fuel	ΔH _c (kJ/mol)	r	c (m/s)*	F (N)*	Is (s)*
Ethanol	1236	2.1	3480.9	10791	354.8
Kerosene	6779	3.5	3442.2	15490	350.8
Gasoline	5075	3.2	3921.5	16471	399.7

^{*} calculated based on a 1 kg/s mass flow rate of fuel with η_c = 1, η_{int} = 0.7, η_p = 1

Final fuel selection

Fuel: Ethanol C2H5OH

- -Potential biofuel
- -low mixture ratio
- -good specific impulse

Oxidizer: Gaseous Oxygen O2

- -easy to obtain and store
- -can be pressurized
- -does not decompose

History

Viking Sounding Rockets

http://en.wikipedia.org/wiki/ Viking_%28rocket%29

XS-1

http://www.aerospaceweb.org/aircraft/research/x1/

Summary and Next Steps

- 1. Fuel Selection
- 2. System Selection
- 3. Maths
- 4. Combine math
- 5. Try and connect the math to reality

"It's time we face reality, my friends. ... We're not exactly rocket scientists."

http://imgarcade.com/1/science -comic-larson/