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Fuel Selection

Fluid Thrust Chamber Design

Oxidizers Mixture Ratio 

by mass

Cost Density(2MPa)

(EES)

Storage 

Requirements

LOX 2.1 Medium 1156 kg/m^3 Pressure Relief

GOX 2.1 Low 28.73 kg/m^3 High Pressure

N2O 6.08 Low 38.78 kg/m^3 High Pressure

Fuel Mixture Ratio 

by mass w/O2

Cost Availability Deposit 

Formation

Ethanol 2.1 Low Good Low

Kerosene(RP-1) 2.56 High Fair low

Gasoline 3.2 Low Good High

44



Performance Parameters
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Characteristic Velocity

900 m/s to 2500 m/s

Stay time

0.001 to 0.040 sec

Characteristic Length

Typically 0.8 to 3.0 Meters for 

bipropellants (sutton)

Huzel, Dieter, and David Huang. "Introduction." Modern 

Engineering for Design of Liquid-Propellant Rocket 

Engines. Vol. 147. Washington D.C.: AIAA, 1992. 7-22. 

Print.

Sutton, Rocket Propulsion 

Elements 7th edition 



Outline
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Fluid Injectors and Injector Heads
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Selection Considerations

● Types of injector elements

● Number of elements/manifold design

● Selecting injector elements dependant on 

the the phase of the fluids being injected

● Manufacturing capabilities

● Heat transfer and combustion stability

http://www.dailytech.com/3D+Printed+Rocket+Engine+Injector+Desig

ned+Tested/article31959.htm



Fluid Injectors and Injector Heads
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Liquid-Liquid 

Elements
● Like and Unlike Elements

● Mixing Efficiency vs. Mass Distribution

88Huzel, Dieter, and David Huang. "Introduction." Modern Engineering for Design of Liquid-Propellant Rocket Engines. Vol. 147. Washington D.C.: AIAA, 1992. 

7-22. Print.



Fluid Injectors and Injector Heads
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Gas-Liquid 

Elements
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● Requires Phase change of one of our 

propellants from liquid to gas

Huzel, Dieter, and David Huang. "Introduction." Modern Engineering for Design of Liquid-Propellant Rocket Engines. Vol. 147. Washington D.C.: AIAA, 1992. 

7-22. Print.



Fluid Injector Impingement Patterns
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● Conservation of Momentum

● Heat transfer to outer walls

● Reduce vortexing in the corner

● Account for different exit velocities
For ℽ = 0 (axially aligned stream)

Sutton, George Paul, and Oscar Biblarz. "Thrust Chambers." Rocket Propulsion 

Elements. 7th ed. New York: John Wiley & Sons, 2001. Print.



Fluid Injector Manifolds
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http://arstechnica.com/science/2013/04/how-

nasa-brought-the-monstrous-f-1-moon-rocket-

back-to-life/1/

Sutton, George Paul, and Oscar Biblarz. "Thrust Chambers." 

Rocket Propulsion Elements. 7th ed. New York: John Wiley & 

Sons, 2001. Print.

Corrected Mixture Ratio for 

injector testing



Selection
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Liquid-Liquid 

Element

1212

Gas-Liquid 

Element
● 1st Choice

● Regenerative Cooling System

● 2nd Choice

● Ablative Cooling System



Heat Transfer - Introduction

Why is heat transfer important in rocket design?

● Guides the design, testing and failure 

investigations

● The thrust chamber must be cooled in order to 

withstand imposed loads and stresses

General idea of steady-state cooling methods

● Extreme temperatures are created in thrust 

chamber

● A liquid or solid is meant to absorb the heat being 

created before being expelled from the rocket

Fluid Thrust Chamber Design
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^boom

http://www.dailymail.co.uk/news/article-1341521/Boom-Indian-space-scientists-watch-horror-rocket-explodes-minutes-

off.html

http://www.dailymail.co.uk/news/article-1341521/Boom-Indian-space-scientists-watch-horror-rocket-explodes-minutes-off.html


Heat Transfer - Distribution

Heat Distribution

● Heat is transferred to the nozzle walls, 

injector face and thrust chamber

● Most heat transfer occurs due to 

convection and radiation

● Peak occurs at nozzle throat

● Minimum is at the nozzle exit

○ demonstration

Fluid Thrust Chamber Design
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Heat Transfer - Method Overview

Methods

● Steady State Cooling

○ Heat transfer rate and temperature of the thrust 

chamber reach thermal equilibrium

● Transient Heat Transfer/Heat Sink Method

○ Temperature of thrust chamber does not reach 

equilibrium

○ Temperature continues to increase with 

duration of thrust

○ Design wall thickness and material to withstand 

max temperature

○ Simple to implement

○ Only works for very short burn times

Fluid Thrust Chamber Design
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● Regenerative Cooling

○ Summary

■ Regenerative because often times the coolant 

is one or both of the propellants before it is 

injected

■ Fuel, oxidizer or combination of the two is fed 

through a cooling jacket to absorb heat before 

ejection

○ Pros

■ Good for long durations

■ Requires less exotic materials than other 

alternatives

■ Preheating the fuel prior to injection raises it’s 

energy level

○ Cons

■ High manufacturing complexity

Heat Transfer - Regenerative Cooling

Fluid Thrust Chamber Design
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http://www.slideshare.net/srikanthlaxmanvinjam/cooling-in-liquid-rockets


Film cooling

● Summary

○ Auxiliary method to augment another technique of 

cooling

○ A relatively thin fluid film protects the walls from 

excessive heat

○ Can be applied by injecting small quantities of fuel 

or an inert fluid through at very low velocity 

through orifices in injector

Heat Transfer - Supplementary Cooling Methods

Fluid Thrust Chamber Design
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Sutton, Rocket Propulsion Elements 7th 
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Ablative cooling

● Summary

○ The inside of the chamber is coated with a solid 

ablative shield that slowly burns away in a 

controlled manner and carries the absorbed 

heat away from the rocket while the remaining 

material insulates the thrust chamber

● Pros

○ Operates for several minutes

● Cons

○ One time use

○ Low chamber pressure

Radiative Cooling

● Up to 35% of heat transfer is through radiation

● Nozzle and thrust chamber usually stick out of vehicle 

to accomodate
18

Heat Transfer - Supplementary Cooling Methods
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Design Decisions

● Best option:

○ Regenerative cooling

○ pending whether or not we can 3D print

■ MTI

● Fallback options

○ Ablative cooling with graphite

○ Film cooling

Heat Transfer - Design

Fluid Thrust Chamber Design
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Combustion Instabilities

● Causes

○ Energy Flow

○ Coupling

● Consequences

○ Engine failure

● Three general types:

○ Low Frequency

■ Internal Damage

■ Non-acoustic

○ High Frequency

■ Large oscillations

■ Acoustic

Fluid Thrust Chamber Design
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Arbit, Modern Engineering Design of Liquid Rocket 

Propellants 



Fluid Thrust Chamber Design

General Frequency Equation

● Longitudinal Mode

○ Least severe form

● Tangential Mode

○ Most severe form

● Radial mode

● Optimize for Tangential

21

Arbit, Modern Engineering Design of Liquid Rocket 

Propellants 



Acoustic Effects 

● Intrinsic Acoustic

○ Dependencies 

■ Chemical Kinetics

○ Coaxial injectors are best 

for preventing effects.

● Video

○ Geometry relates to 

acoustics

■ Affects coupling

Fluid Thrust Chamber Design
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http://youtube.com/v/XUFBXXtGloE
http://youtube.com/v/XUFBXXtGloE


Fluid Thrust Chamber Design
Avoiding Instabilities/Practicality

● The steps to avoid instabilities require steady state 

pressure releases

○ Injectors must have constant heat release rate

● Testing for the oscillations require extensive studies.

○ Model procedures

● Stability Systems

○ Wall Gap

○ Cavities

○ Baffles 

2323Arbit, Modern Engineering Design of Liquid Rocket 

Propellants 



Fluid Thrust Chamber Design
Application

● Design of the combustion chamber to reduce oscillations

● Injectors should be regulated 

● Rocket burn time

○ Experimental evaluation

○ Pressure transducers to check for this

● Account for tangential instabilities

2424



Combustion Chamber

Material Properties for the combustion chamber and nozzle:

● Working Temperature

● Strength at High Temperature

● Oxidation Resistance

● Machinability/Weldability

● Corrosion Resistance

● Thermal Conductivity

Fluid Thrust Chamber Design

2525
http://cs.astrium.eads.net/sp/launcher-propulsion/manufacturing/welding-

technologies.html

http://cs.astrium.eads.net/sp/launcher-propulsion/manufacturing/welding-technologies.html


Combustion Chamber

Material of choice: Superalloy

Superalloy: Alloy that can withstand high temperature, high stresses, and highly 

oxidizing environments

Two Types of Superalloys:

● Nickel Based

● Cobalt Based

Nickel Based: More widely used, higher strength, ductility and fracture 

toughness

Cobalt Based: Higher oxidation, hot corrosion, and wear resistance

26
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Combustion Chamber

Superalloy of choice: Haynes 230

Other Superalloys to consider:

● Haynes 25: Lower Working Temperature (WT) 980 °C

● Inconel 625: Hard to Machine, Lower WT (980 °C)

● Inconel 728: Lower WT than Inconel 625 (700 °C)

● Rene 41: Lower WT (980 °C), Harder to machine than Inconel

Other Material Considerations:

● 3D Printing C-103: Extremely expensive (MTI)

● Graphite: Would have to replace after every use

● Ceramic: Unknown distributor, low ductility

27
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Combustion Chamber

Machinability/Weldability

Can be:

● Forged (Cold Worked) 

● Hot worked (at 1177 °C)

● Casted

Welding options:

● Gas Metal arc (GMAW)

● Gas Tungsten arc (GTAW)

● Resistance Welding

28
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Combustion Chamber

Working Temperature

● Working Temperature of at least 1150 °C

● Melting Temperature is 1300 °C

● Chamber Temperatures could be as high 

as 2500 °C

Strength at High Temperature

● Chamber pressures may be as high as    2 

MPa 

29

Fluid Thrust Chamber Design

http://www.haynesintl.com/pdf/h3000.pdf (pg. 9)

SMART Rockets 

(http://www.dglr.de/publikationen/2013/301353.pdf)

http://www.haynesintl.com/pdf/h3000.pdf
http://www.dglr.de/publikationen/2013/301353.pdf


Summary/Selections

First Choices

● Injector: Coax Element

● Cooling System: Regenerative Cooling

● Thrust Chamber Material: C-103

Secondary Options

● Injector: Like Impinging Doublet

● Cooling System: Ablative Cooling

● Thrust Chamber Material: Haynes 230

Additional Considerations

● Acoustic design configuration

30
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Appendix: Combustion Chamber

Oxidation Resistance

● Mils (thousandths of an inch)
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Appendix: Combustion Chamber

Thermal Conductivity

● Important to maintain a lower internal combustion chamber

temperature

Low when compared to softer metals (@ 973.2 K) like:

● Copper: 354 W/m-K

● Aluminum: 92 W/m-K

● Nickel: 71 W/m-K

Comparable to stronger metals (@ 973.2 K) like:

● Carbon Steels: ~30 W/m-K

● Low Alloy Steels: ~30 W/m-K

● Stainless Steels: ~24 W/m-K

● High Alloy Steels: ~23 W/m-K
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