

Solid Motor Casing & Design

Solid Design Team: Tony, Jason, Andrew, Tarique, Esteban, Jack

Quick Recap

Motor and Propellant Selection

- Non-Toxic
- Non-Detonable
- HTPB/AP/AL Composite

Aerotech L2200G-P Mojave Green

Design Process

Payload

Drogue Chute

Payload/Avionics

Main Chute

Motor and Casing

Motor Case Design Considerations

What we know:

- Peak Thrust ≈ 3100N
- Burn Duration ≈ 2.4s
- Dimensions

What we need to know:

- Chamber Pressure
- Chamber Temperature

Nozzle Design Considerations

What we know:

- Peak Thrust ≈ 3100N
- Burn Duration ≈ 2.4s
- Dimensions

What we need to know:

- Chamber Pressure
- Gas Exit Velocity
- Gas Exit Temperature

Igniter Considerations

What we know:

Motor Overall Performance

What we need to know:

Nothing

Solid Rocket Motor

- Case
- Solid Propellant
- Igniter
- Nozzle

Motor Case Loadings/Stresses

(1)

Motor Case Materials

- Composite
 - E-glass
 - Aramid (Kevlar 49)
 - Carbon fiber
- Metal
 - Titanium alloy
 - Alloy steel
 - Aluminum alloy 2024
- Combination

Material	Tensile Strength, N/mm ² (10 ³ psi)	Modulus of Elasticity, N/mm ² (10 ⁶ psi)	Density, g/cm ³ (lbm/in. ³)	Strength to Density Ratio (1000)	
		Filaments			
E-glass	1930-3100 (280-450)	72,000 (10.4)	2.5 (0.090)	1040	
Aramid	3050-3760	124,000	1.44		
(Kevlar 49)	(370-540)	(18.0)	(0.052)	2300	
Carbon fiber or graphite fibers	3500-6900 (500-1000)	230,000-300,000 (33-43)	1.53-1.80 (0.055-0.065)	2800	
	i	Binder (by itself)			
Ероху	83 (12)	2800 (0.4)	1.19 (0.043)	70	
	Filament-Re	inforced Composite I	Material		
E Glass	1030	35,000	1.94	500	
	(150-170)	(4.6-5.0)	(0.070)		
Kevlar 49	1310	58,000	1.38	950	
	(190)	(8.4)	(0.050)		
Graphite IM	2300	102,000	1.55	1400	
	(250–340)	(14.8)	(0.056)		
		Metals			
Titanium alloy	1240	110,000	4.60	270	
	(180)	(16)	(0.166)		
Alloy steel	1400-2000	207,000	7.84	205	
(heat treated)	(200-290)	(30)	(0.289)		
Aluminum	455	72,000	2.79	165	
alloy 2024 (heat treated)	(66)	(10.4)	(0.101)		

Composites

Table 2.1 E357 T-6 Casted Aluminum												
AMS 42	88	F _{tu} (k	si) F _{ty}	(ksi)	Fcy (ksi)	F _{su} (ksi) E	(ksi)		v p	(lb/in³)
T=72°1	F	45	3	36	36	2	8 1	0.4E3	0.	.33	0.097	
T=300° Table 2		$\begin{cases} \varepsilon_1 \\ \varepsilon_2 \\ \gamma_1 \end{cases}$: { =	$\begin{bmatrix} S_1 \\ S_2 \\ 0 \end{bmatrix}$	1 5	12 22 0	0 0 S ₆₆]	$\left\{egin{array}{l} \sigma_1 \\ \sigma_2 \\ au_{12} \end{array}\right.$		G12 (psi)	v12	(3)
room temperat		348,000	232,000	11,000	36,200	13,800						
300°F	7	313,200	208,800	9,900	32,580	12,420	2,466,000	1,305,	000	638,000	0.27	
1.5 Safe Facto	٠ ١	208,800	139,200	6,600	21,720	8,280						

Filament Winding

- Orientation of Filament
 - Compromise

FIGURE 14-5. Filament winding terminology (each sketch is drawn to a different scale).

(1)

Metals

- Titanium alloy
 - Heavy
 - Good strength to weight ratio
- Alloy steel
 - Heavier
 - Strongest
- Aluminum
 - Provides good strength to weight ratio
 - Lightest

Nozzles

There are five

- Fixed (a)
- Movable (b)
- Submerged (c)
- Extendible (d)
- Blast-Tube-Mounted (e)

Moveable nozzle with flexible joint (allow controlled deflection of the thrust axis and this allows vehicle maneuvers)

(shorter overall length)

(c)

7/////////

concept. Allows large nozzle at high altitude, but minimizes vehicle length and volume during ascent.

Nozzie with blast tube (needed in some tactical missiles for balancing the center of gravity)

Nozzles: Design and Construction

- Ablatively Cooled
- Steel or aluminum Shells
- Composite ablative liners

Nozzle Design Decision

WE'RE NOT BUILDING ONE!!

Why?!?

Nozzle Selection

 Aerotech L2200G-P Mojave Green and RMS 75/5120 kit comes with a nozzle

Solid Rocket Motor Expert

Robert Watson

Robert at BuyRocketMotors.com 817-494-3834

rwatson@buyrocketmotors.com www.BuyRocketMotors.com

Igniters

Pyrogens Pyrotechnic

FIGURE 14-13. Simple diagrams of mounting options for igniters. Grain configurations are not shown.

Igniters

Most frequent is Electroexplosive device (Pyrotechnic)

Bridgewire

3.0.1 Design Requirements

The igniter design shall be based on the following priority of requirements:

- (1) Specified Performance
- (2) Specified Reliability
- (3) Lowest Possible Cost

Field Trip?

Summary

- Motor Case: 2024 Aluminum Alloy
 - Lightweight
 - Capable of enduring thermal and pressure loads
 - Machined or Off-The-Shelf (TBD)
- Nozzle: Built into Motor
 - Saves time and money
 - Redundant to build additional nozzle
- Igniter: Bridgewire explosive
 - o Reliable
 - Good "performance"
 - Cheap

Whats Next?

- Propellant Combustion
 - Burn rate
 - Flame Pattern
 - Ignition Characteristics
- Propellant Stability
 - Acoustic Resonance
 - Ignition Wire Configurations
 - Internal Gas Flow Cavity Considerations

References

- (1) Rocket Propulsion Elements, 8th Edition. Sutton, George P. and Biblarz, Oscar.
- (2) Solid Rocket Motor Igniters. NASA
- (3) Cowles, Devon K. "Design of a Rocket Motor Casing." Diss. Rensselaer Polytechnic Institute, 2012. Print.

Questions?

