

Bipropellant Safety and Testing

Kevin Cavender, Mario Reillo, Lucas Verge, Justin Stanton, Denton Donahou

System Diagram

Part 1: Safety Documentation

• MSDS

- Federal and State Guidelines
- NAR regulations
- Supplier and Industry Standards

Various Safety Procedures

- Liquid Nitrogen Shock Test
- Liquid Oxygen Filling
- Downrange rules
- Launch Prep
- Ignition procedures
- Testing safety procedures
- Testing/Launch Positions

Part 2: Detailed Safety Procedures

- Written procedure
- Citation from sources
- Compliance with university guidelines
- Verification with competition guidelines

Part 3: Safety Checklists

Safety Checklist Heuristic

- Flight/Test Number
- Date
- Checklist Name, Scope, Revision Number
- Step by Step Safety Operation
- Final Go/No-Go
- Sign-Off of Relevant Officer

WSU ME 483 Liquid Rocket Team

Liquid Oxygen Filling Checklist

Ver 1.0

Date: _____ Flight/Test #: _____

Lead Safety Officer: _____

All personnel handling LO, wearing Personal Protective Equipment
Tank clear of all combustion sources
Valves and piping inspected for leaks
Fittings Torqued correctly
Degrease fittings
Shutdown electronics
Ground the rocket/test stand/O2 Tank
Open Oxygen venting valve
Connect LO, fuel line and fill a small amount
Allow system to cool, check for leaks and proper venting
Rocket Cleared for LO2 Fueling

Go

No-Go

Notes

Safety Roles

- Flight Director
 - $\circ \quad \text{Gives final go} \quad$
- Lead Safety
 - Maintains records
 - Ensures Electronics Compliance
- Range Officer
 - Downrange operations
- Filing operator
 - Fills tanks
- Equipment Coordinator

Test Stand Design

- Provide structure for engine testing
- Evaluate engine operation
- Determine force and pressures
 - Pressure regulators, load cell

Test Stand

What Data we are recording and why

- Chamber pressure
- Tank pressures
- Nozzle Exit pressure
- Lead to further changes or design constraints

Fubar Hackerspace http://blog.arduino.cc/2015/02/27/open-source-3d-printed-rocket-enginecontrolled-by-arduino/

Low/High Pressure Water

- Low Pressure Water
 - Objective: Determine Injector Flow and Impingement Pattern

Test Plan

Test	Purpose	Parts tested
High Pressure Water	Verify the integrity of high pressure system confirm performance	Injector
High Pressure Ethanol GOX	Determine the flame temperature of injector	Injector
High Pressure Water and LN2	Cold shock the system to check for leaks determine if freezing	Tanks/Piping/Injector
High Pressure Ethanol LOX	Determine characteristic length of Combustion Chamber and Finalized Design	Full Propulsion System

Future Plans

What we plan to do next and when to complete it

- Build test stand 3/28
- Construct Prototype 4/4
- Begin testing 4/5
- Avionics/Recovery
- Flight Vehicle Design

Thank You

Antares Rocket [Orbital Sciences]