
Fuselage Design and Structure

Solid Design Team

Scott, Nick, Esteban, Tarique, and Jack

Common Fuselage Material

- → Cardboard
- → Phenolic
- → Fiberglass
- → Fiberglassed Phenolic
- → Carbon Fiber
- → Quantum
- → Blue Tube

Cardboard

Positives

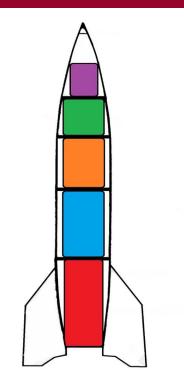
- → Commonly used for low power rockets
- → Cheap: \$15.00
- → Easy to obtain

Negatives

- → Low durability
- → Finishing needed

Based on 4" OD and 34" Length

http://aksrockets.blogspot.com/2011/11/rocketry-materials.html



Common Fuselage Material

> Cardboard

- → Phenolic
- → Fiberglass
- → Fiberglassed Phenolic
- → Carbon Fiber
- → Quantum
- → Blue Tube

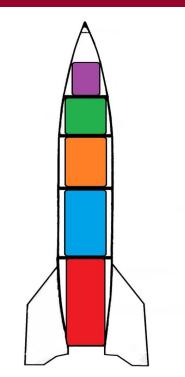
Phenolic

- → Pretty good heat resistance
- → Cheap: \$44.99
- → Easy to obtain

Negatives

- → Brittle and tends to shatter
- → Finishing needed

Based on 6" OD and 36" Length



http://www.gbrockets.co.uk/store/parts/tubes/phenolic-tubes.html

Common Fuselage Material

- Cardboard
- > Phenolie
- → Fiberglass
- → Fiberglassed Phenolic
- → Carbon Fiber
- → Quantum
- → Blue Tube

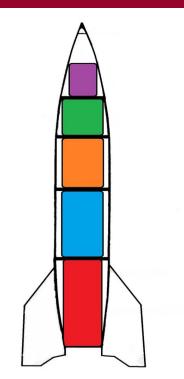
Fiberglass

Positives

- → Good heat resistance
- → Good durability
- → No finish needed

Negatives

- → Expensive: \$170.00
- → Heavy: 2.4 kg


Based on 5" OD and 60" Length

Common Fuselage Material

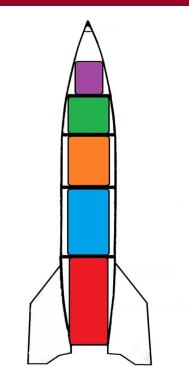
- Cardboard
- > Phenolie
- → Fiberglass
- → Fiberglassed Phenolic
- → Carbon Fiber
- → Quantum
- → Blue Tube

Fiberglass Phenolic

- → Good heat resistance
- → Good durability
- → Cheaper than plain fiberglass if we wrap: \$184.99

Negatives

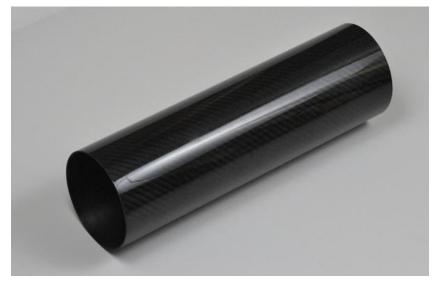
- → Finish is dependant on us
- → Availability is low


http://aksrockets.blogspot.com/2011/11/rocketry-materials.html

Common Fuselage Material

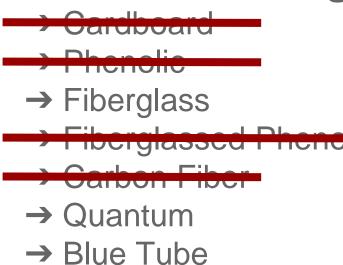
- > Phonolic
- → Fiberglass
 - Fiberglassed Phenolie
- → Carbon Fiber
- → Quantum
- → Blue Tube

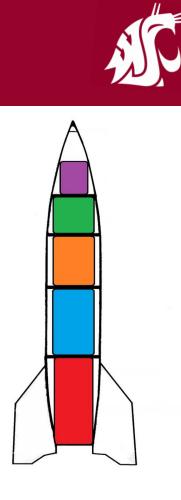
Carbon Fiber


Positives

- → Great Durability
- → Great Heat Resistance
- → Good Finish

Negatives


- → Very Expensive: \$350.00
- → Used for rockets going Mach 2


Based on 5.5" OD and 48" Length

http://www.fwcarbon.com/products/4-carbon-fiber-tube-101mm-od-x-98mm-id

Common Fuselage Material

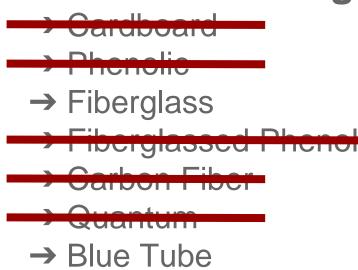
Quantum

Positives

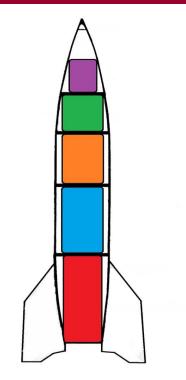
- → Good Finish
- → Good Durability

Negatives

- → Low heat resistance
- → Availability is low



http://www.rebelrocketry.com/shop/product_info.php?info=p424_Quantum-Body-Tube-QT-3-9.html



Common Fuselage Material

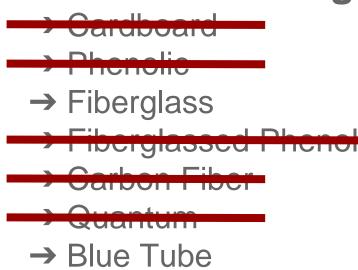
Blue Tube

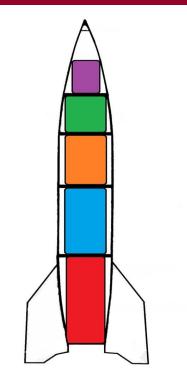
Positives

- → Good Durability
- → Good heat resistance
- → Relatively Cheap: \$89.95

Negatives

- → Finishing needed
- → Heavy: 1.89 kg

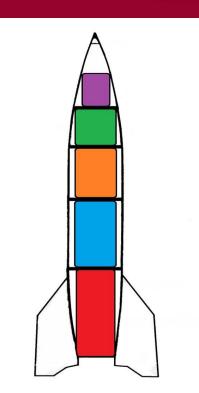

Based on 5.5" OD and 72" Length


http://www.alwaysreadyrocketry.com/product/1-15-29mm-x-062-wall-x-48-airframe-mmt/

Common Fuselage Material

	Durability	Heat Resistance	Difficulty of Finish	Weight	Cost	Availability	Integration to System	Results
Fiberglass	+	+	+	-	-	+	0	2
Blue Tube	+	+	-	-	+	+	+	3

Blue Tube 2.0



http://www.alwaysreadyrocketry.com/about-us/blue-tube-2-0/

- Payload
- Drogue Chute
- Payload/Avionics
- Main Chute
- Motor and Casing

- Centering rings
- 9mm thick Birchwood
- Price \$7.50 each
- Make it ourselves

http://www.alwaysreadyrocketry.com/product/centering-rings/

Parachutes

- Parachute protector
- Flame Retardant material- Nomex
- Cost \$10-\$30-Fruity Chutes

http://fruitychutes.com/buyachute/nomex-blankets-c-2/11-nomex-blanket-3-75mm-airframe-p-19.html

Avionics

- Electronics bay
- Blue Tube Cost \$54.95
- Small tube that will fit in to 5.5in

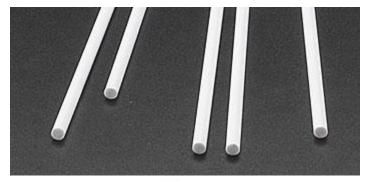
http://www.alwaysreadyrocketry.com/product/blue-tube-electronic-bays/

Payload

- Still in discussion
- Need to be easy access
- Depends on Payload
- Option another E-Bay

Fuselage Pins/Connectors Design Considerations

- Drag Separation
- Shifting Mass
- Apogee
- Oversized Ejection Charge
- Improper Ejection Timing


Shear Pins

- Nylons Screws
- Nylon Rods
- Styrene Rods

Alternatives

- Neodymium Magnets

http://www.hobbylinc.com/htm/pls/pls90861.htm http://www.amazon.com/Neodymium-Magnets-inch-Disc-N48/dp/B001KUWM3C

Shear Pins

Advantages

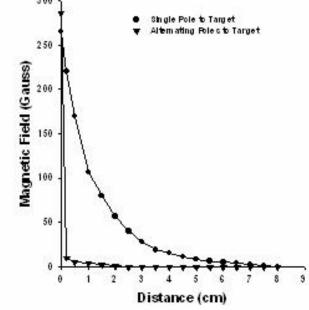
- Very cheap (\$0.60 \$0.80 per foot)
- Easily Available
- Repeatable

Disadvantages

- Requires drilling holes in the rockets
- Shear pins always need to be flush against fuselage exterior

Neodymium Magnets

Advantages


- Cheap (\$5.99 for 30 1/4in x 1/16in disks)
- Easily Available
- Repeatable
- Doesn't require any destructive hardware modifications

Disadvantages

- Requires little more testing than shear pins

Magnetic "Pins" Expected Results

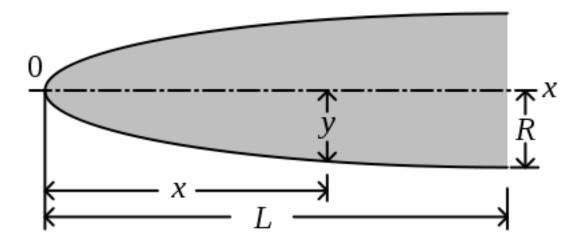
 Use spacers to vary magnetic field strength for more customizable alternative to shear pins

Testing Procedure

Gutentite Testing Procedure

- Tests how effective a friction fit will hold up against rapid acceleration and deceleration
- Based on the results, test different shear pin and magnets configurations/sizes

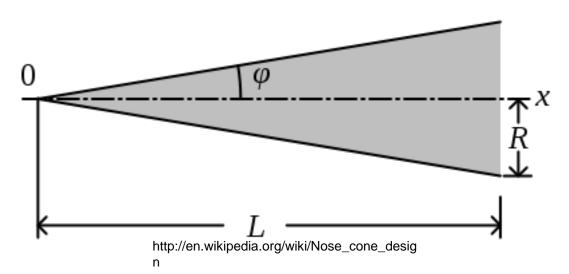
Decision?


Test both shear pins and magnets and pick the best

http://rocketsnw.com/?page_id=1651 30

Nose Cone

General Dimensions:



http://en.wikipedia.org/wiki/Nose_cone_desig n

31

- Diameter Equation: $y = \frac{xR}{L}$ $\phi = \arctan\left(\frac{R}{L}\right)^{\text{and }} y = x \tan(\phi)$

• for
$$0 \le x \le L_1$$
 : $y = \frac{xR_1}{L_1}$

half angle :

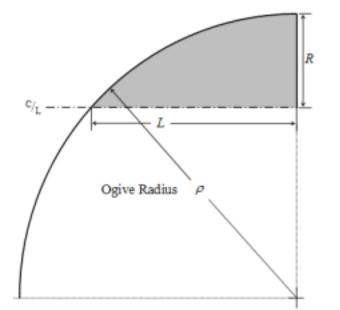
half angle :

$$\phi_2 = \arctan\left(\frac{R_2 - R_1}{L_2}\right) \text{and } y = R_1 + (x - L_1)\tan(\phi_2)$$

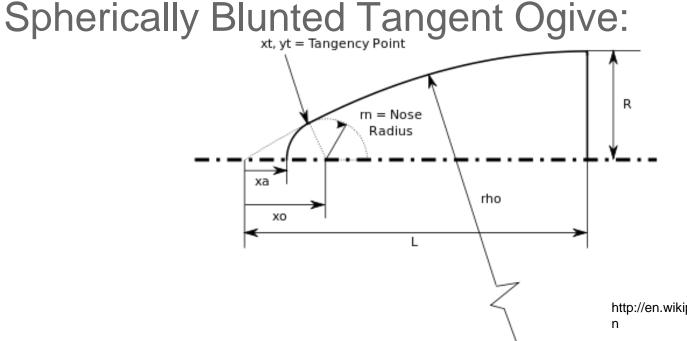
http://en.wikipedia.org/wiki/Nose_cone_desig

34

T

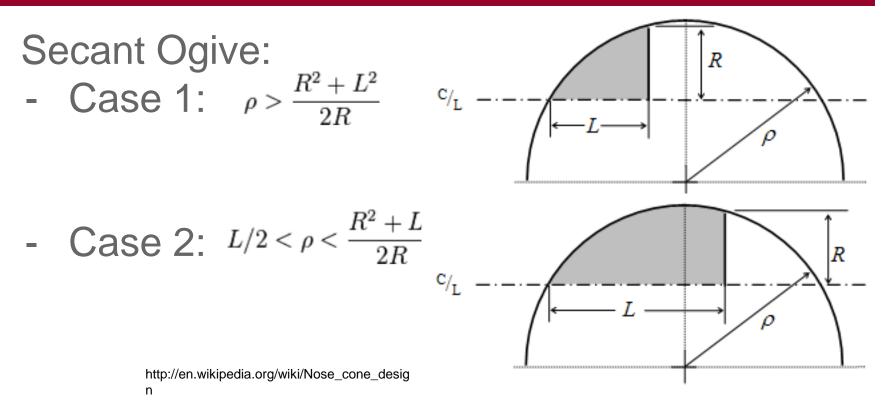

Tangent Ogive:

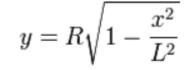
- Ogive Radius: $\rho = \frac{R^2 + L^2}{2R}$

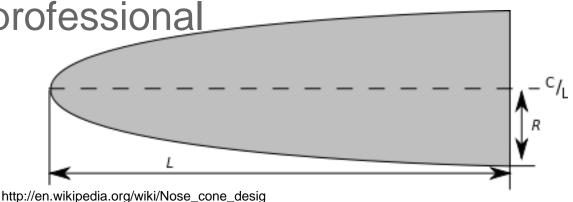

- Radius (y) at any x:

$$y = \sqrt{\rho^2 - (L-x)^2} + R - \rho$$

L ≤ ρ
If equal, hemisphere

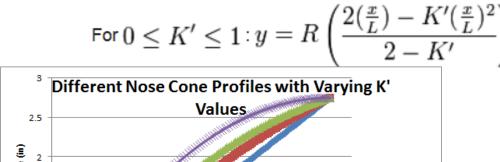



http://en.wikipedia.org/wiki/Nose_cone_desig



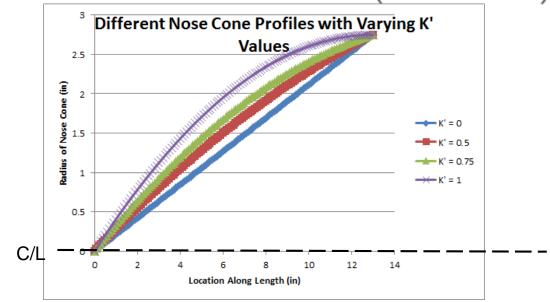
Elliptical:

- Major axis: Centerline
- Minor axis: Base
- Not found in professional rocketry



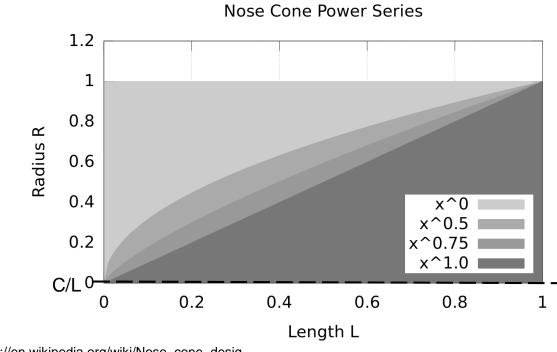
Parabolic:

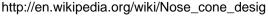
For
$$0 \leq K' \leq 1$$
: $y = R\left(\frac{2(\frac{x}{L}) - K'(\frac{x}{L})^2}{2 - K'}\right)$


- K' can vary between 0 and 1
 - K' = 0 for a cone
 - K' = 0.5 for a $\frac{1}{2}$ parabola
 - K' = 0.75 for a $\frac{3}{4}$ parabola
 - K' = 1 for a full parabola
- If K' = 1, then nose cone is tangent to body at base
- Commonly confused with elliptical shape

L = 13 inR = 2.75 in

Parabolic:

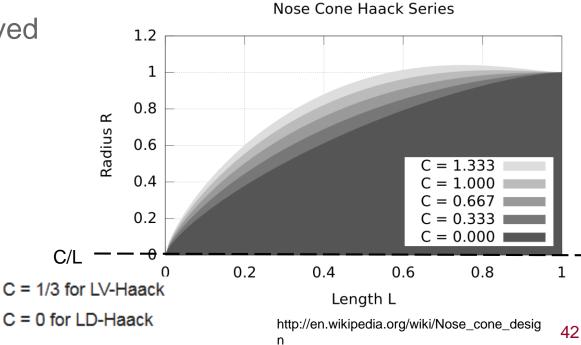

Power Series

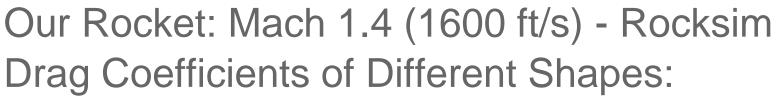

- Usually blunt tip
- Always discontinuity at joint

For
$$0 \le n \le 1: y = R\left(rac{x}{L}
ight)$$
 n = 1 for a cone

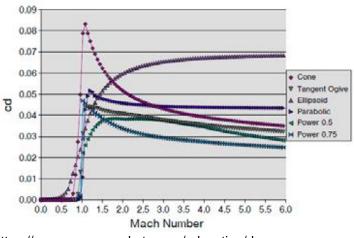
- n = 0.75 for a 3/4 power
- n = 0.5 for a 1/2 power (parabola)

n = 0 for a cylinder





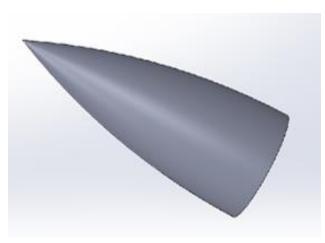
Haack Series


- Mathematically derived -
- Minimize drag
- Two Cases: _
 - Given L,D
 - Given L,V

$$\theta = \arccos\left(1 - \frac{2x}{L}\right)$$
$$y = \frac{R}{\sqrt{\pi}}\sqrt{\theta - \frac{\sin(2\theta)}{2} + C\sin^3\theta}$$

- At Mach 1.4, power series and tangent ogive are optimal
- Study done for Sugar Shot to Space

https://www.apogeerockets.com/education/do wnloads/Newsletter376.pdf

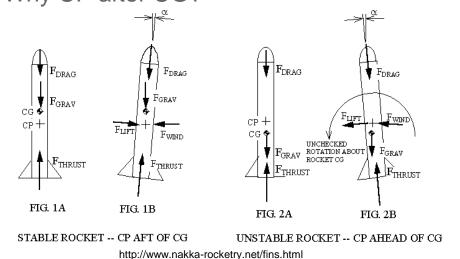

	Drag Coefficient	Requires Machining	Tangent at Base?	Used in Amateur Rocketry?	Used in Supersonic Flight?	Integration into System	Results
Power Series	+ (GREAT)	- (YES)	- (NO)	+ (YES)	+ (YES)	+ (EASY)	+2
Tangent Ogive	0 (MID)	+ (NO)	+ (YES)	+ (YES)	+ (YES)	+ (EASY)	+5

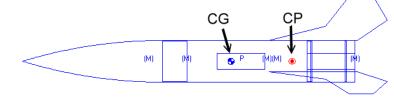
Nose Cone

Decision: Tangent Ogive Solidworks Model:

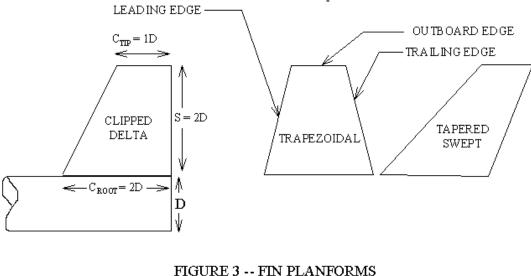
- L = 13 in
- D = 5.5 in

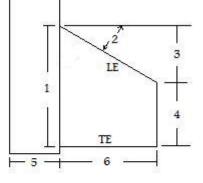
Nose Cone


- Precision-molded plastic nose cones
- Length = 13 inches
- Diameter = 5.5 inches
- Price = \$54.95



- Purpose: Provide stability during flight
 - CG: the mass balance point of the rocket Ο
 - CP: the aerodynamic balance point 0
- Why CP after CG?


http://www.rocketreviews.com/images/cp_cg_image.gif



- How far behind the CG should the CP be?
 - Model rockets: 1 body diameter
 - Amateur rockets: 1.5-2 body diameters
- Best shape of fins?
 - For amateur rockets, not highly important as long as
 - CP-CG relationship is maintained
 - Span is sufficient to generate a good lift force

Most common fin shapes

- 1. Root Chord
- 2. Sweep Angle
- 3. Sweep Length
- 4. Tip Chord
- 5. Body Tube Diameter
- 6. Semi Span
- LE Leading edge
- TE Trailing Edge

Rocksim Tests

Root Chord (in.)	8	8	8	8	8	8
Tip Chord (in.)	5	5	5	5	5	5
Sweep Length (in.)	3	3	3	3	3	3
Sweep Angle (deg.)	20.6	20.6	20.6	20.6	20.6	20.6
Semi Span (in.)	5	6	7	8	9	10
Altitude (ft.)	10205	10104	10005	9910	9819	9729

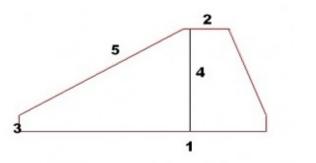
Tip Chord (in.) 1 2 3 4 5 5 Sweep Length (in.) 3 3 3 3 3 3 3 Sweep Angle (deg.) 20.6 20.6 20.6 20.6 20.6 20.6	Altitude (ft.)	10177	10165	10146	10126	10104	10081
Tip Chord (in.) 1 2 3 4 5 5 Sweep Length (in.) 3 3 3 3 3 3 3 Sweep Angle (deg.) 20.6 20.6 20.6 20.6 20.6 20.6							
Tip Chord (in.) 1 2 3 4 5 5 Sweep Length (in.) 3 3 3 3 3 3 3	Semi Span (in.)	6	6	6	6	6	6
Tip Chord (in.) 1 2 3 4 5 5	Sweep Angle (deg.)	20.6	20.6	20.6	20.6	20.6	20.6
	Sweep Length (in.)	3	3	3	3	3	3
Root Chord (in.) 8 8 8 8 8 8	Tip Chord (in.)	1	2	3	4	5	5
	Root Chord (in.)	8	8	8	8	8	8

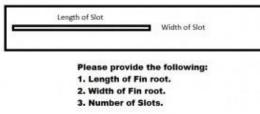
Root Chord (in.)	8	8	8	8	8	8
Tip Chord (in.)	5	5	5	5	5	5
Sweep Length (in.)	1.6	2.8	4.2	6	8.6	12.87
Sweep Angle (deg.)	15	25	35	45	55	65
Semi Span (in.)	6	6	6	6	6	6
Altitude (ft.)	10103.8	10103.5	10104.1	10103.7	10104.1	10104.1

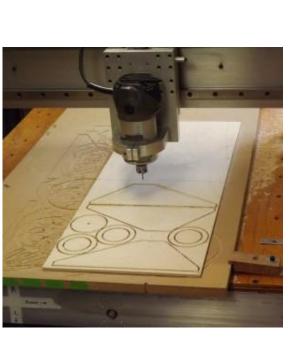
Root Chord (in.)	5	6	7	8	9	10
Tip Chord (in.)	5	5	5	5	5	5
Sweep Length (in.)	3	3	3	3	3	3
Sweep Angle (deg.)	20.6	20.6	20.6	20.6	20.6	20.6
Semi Span (in.)	6	6	6	6	6	6
Altitude (ft.)	10327	10252	10177	10104	10033	9963

• Selecting Fins

- Finalize Rocksim model
- Implement Blue Tube 2.0
- Optimize fin design


• Options


- Manufacture
 - \$10-15 for materials
 - Attachment
 - Slot
 - Mounting bracket
- Custom Purchase

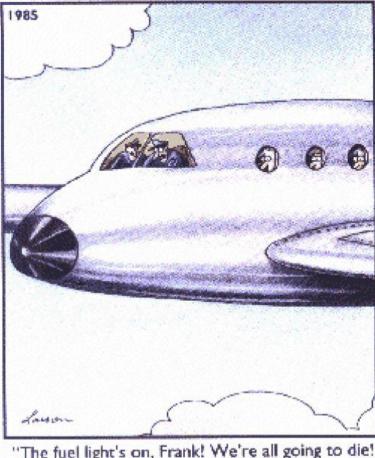


Always Ready Rocketry

- Custom CNC Services
- \$1 per fin
- \$4 per slot

Summary

• Fuselage


- Blue Tube 2.0 from <u>www.alwaysreadyrockery.com</u>
- o 72"(\$89.95) + 48"(\$56.95) = \$146.90
- Internal structures
 - Electronics Bay \$54.95 from <u>www.alwaysreadyrockery.com</u>
 - Centering rings \$7.50 from <u>www.alwaysreadyrockery.com</u>
 - Parachute Protector \$10-\$30 from <u>www.fruitychutes.com</u>
 - Shear Pins/Magnets \$10- \$15
- Nose Cone
 - Tangent ogive precision molded plastic from <u>www.alwaysreadyrocketry.com</u>
 - o **\$54.95**
- Fins
 - Custom made from <u>www.alwaysreadyrocketry.com</u>
 - 3 fins (\$1) + 3 slots (\$4) = \$15

Next Steps

- Finalize Rocksim, Solidworks designs/simulations
- Order parts from <u>www.alwaysreadyrocketry.com</u>
 (2-5 business days shipping)
- Order parts from <u>www.fruitychutes.com</u>
- Assemble rocket
- Test motor and recovery system
- Launch!

Questions?

Thank You

"The fuel light's on, Frank! We're all going to die! ... We're all going to die! ... Wait, wait. ... Oh, my mistake—that's the intercom light."