

Testing and Manufacturing Update

4/6/2015 Kisa Brostrom, Kent Evans

WASHINGTON STATE UNIVERSITY

Our Main Problem

Washington State University Hybrid Rocket Team

Rocket Classes

Model Rocket	A	2.5	Levi Dever	
	В	5	Low Power	
	С	10		
	D	20		
	E	40		
	F	80	Mid Power	
	G	160		
	Н	320	Level 1	
	I	640	Level 1	
	J	1280		
Web Device	К	2560	Level 2	
High Power	L	5120 Cutoff Total Impulse		
	М	10240		
	Ν	20480	Level 3	
	0	40960		

http://www.nar.org/standards-and-testing-committee/standard-motor-codes/

Our weight problem

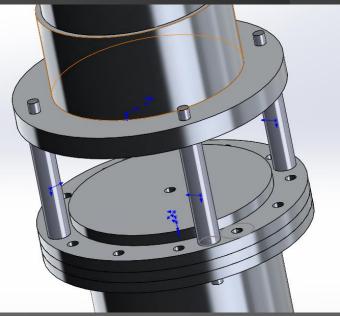
- Current rocket REQUIRES M-class motor to reach 10,000 ft because of the weight
- Need to lighten the total weight such that an L-class motor can make the rocket reach 10,000 ft
- Our rocket motor may or may not perform at that level (will verify/confirm with testing)

Methods of Trimming Weight

- Different Material
 - Material is already purchased
 - Aluminum is easy to machine
 - We have evidence that Aluminum has worked previously.

- Less Material
 - Can design parts to be slimmer (lighter)
 - Trade off strength for weight savings
 - Balancing Act



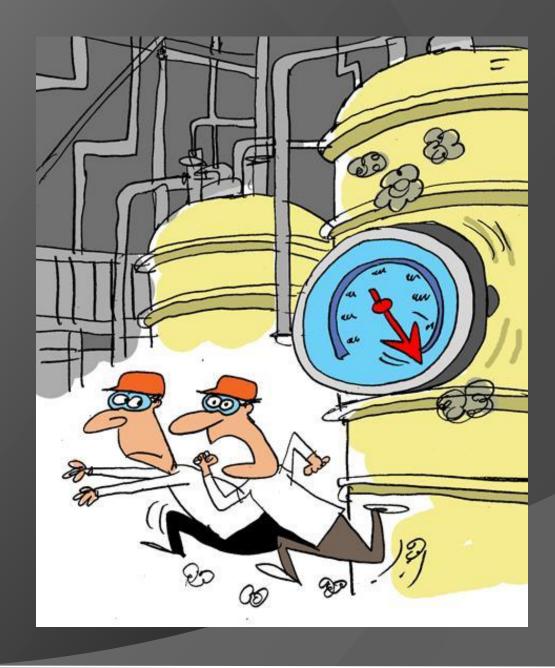

Nashington State University Hybrid Rocket Team

Coupler Redesign

- Design Issues
 - Heavy
 - No room for valve wiring/filling port
- Redesign goals
 - Allow valve access
 - Retain strength (Bending)
 - Lighter weight
 - Allow for Length Adjustment
 - Alternative: Single diameter
 with 2 nuts on each side (4

Total)

Washington State University Hybrid Rocket Team


Current Rocket Mass

- Old Weight: ~60lbs
 - Total Impulse Required:
 ~8200 N-s
- Class M
- Level 3 Certification required
 - Unattainable

- New Weight: ~40-45
 - Total Impulse Required:
 ~5800 N-s
- Still need to cut more weight
- Get the Total Impulse under 5120 N-s

Testing Update

Safety: Standards

- National Association of Rocketry (NAR)
 - High Power Rocket Safety Code
- National Fire Protection Association (NFPA)
 - 1125: Code for the Manufacture of Model
 Rocket and High Power Rocket Motors
 - Chapter 8 = Testing
 - 1127: Code for High Power Rocketry
- American Institute of Aeronautics and Astronautics (AIAA)
 - Handling Considerations of Nitrous Oxide in Hybrid Rocket Motor Testing (written by

he World's Forum for Aerospace Leadership

Safety: Manual

- Adapted from Yale Propulsion
 Laboratories' Experimental
 Rocket Motor Safety & Standards
 Manual
- Stand alone manual for Hybrid testing or easily adapted for general rocket testing with dedication sections to each rocket type
- First Draft Finished 04/08

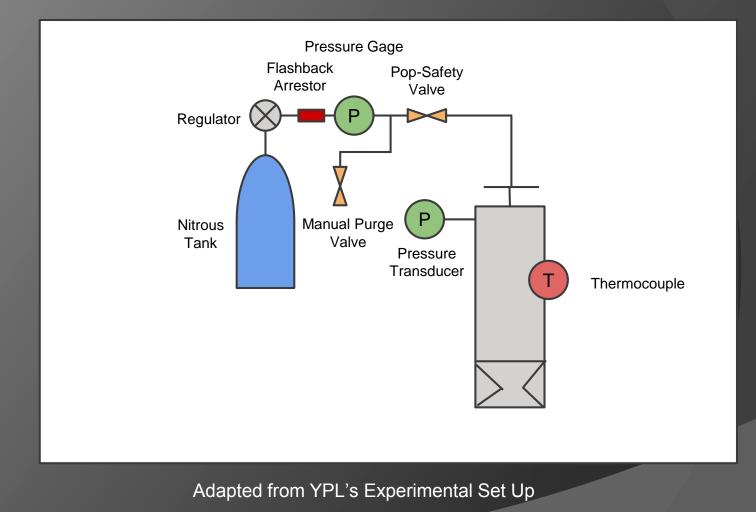
- Table of Contents
 - **Overview**
 - General Safety Procedures
 - Static Test Stand
 Design/Considerations
 - System Plumbing
 Design/Considerations
 - Rocket Motor
 Design/Considerations
 - Testing Locations
 - Testing Procedures
 - Appendices
 - **References**

Safety: Tests

- Low Pressure (Water) Injector
 <u>Test</u>
 - Similar to Liquids Team
 - April 9th
- Nitrous Injector Test
 - Nitrous Flows through Injector and is ignited
 - Week of April 13th
- Hot-Fire Test
 - Week of April 20th
- Hydrostatic Test for Oxidizer
 - Tank if possible

Equipment: Test Stand

- Led by the Liquids Team
- Slightly Redesigned to save money and increase modularity
- Load Cell Mounted
- Holding Plate in Process
- Final Additions
 - Hose Clamps to secure rocket in place
 - Impact Resistant Plexiglas
 - Possible Second Sliding
 - **Cross Member**



Equipment: Data Acquisition and Sensors

- Load Cell
 - Several Available provided by 406 Lab
- Thermocouples
 - 1 Surface Temp
 - Not to exceed 200 C (NFPA Code 1125)
 - 1 If possible, thermocouple to measure nozzle temp
 - Self-Renewing Thermocouple from Nanmac
- Pressure
 - Pressure Transducer in Forward Closure

Equipment: Set-Up

Washington State University Hybrid Rocket Team

Location: Requirements

MINIMUM DISTANCE TABLE						
Installed Total Impulse (Newton- Seconds)	Equivalent High Power Motor Type	Minimum Diameter of Cleared Area (ft.)	Minimum Personnel Distance (ft.)	Minimum Personnel Distance (Complex Rocket) (ft.)		
0 — 320.00	H or smaller	50	100	200		
320.01 — 640.00	Ι	50	100	200		
640.01 — 1,280.00	J	50	100	200		
1,280.01 — 2,560.00	K	75	200	300		
2,560.01 — 5,120.00	L	100	300	500		
10,240.00	М	125	500	1000		
10,240.01 — 20,480.00	Ν	125	1000	1500		
20,480.01 — 40,960.00	О	125	1500	2000		

National Association of Rocketry, High Power Rocket Safety Code

Location: Requirements

- Total Impulse = Impulse x Burn Time
 - Reduce T.I. by reducing burn time
 - Limit Oxidizer per test
 - Still collect peak thrust and regression data
- 50' cleared area; 100' personnel distance
- Access to power for data logging system
- Easy access for emergency response
- On Campus small scale desired
 - Off campus full scale if possible

Manufacturing

Manufacturing


- Combustion Chambers are cut
- Coupler/Injector Plate Material has been cut
- Currently manufacturing only components absolutely required for testing
 - Injector
 - Coupler
 - Combustion Chamber
 - Nozzle
 - End Cap

Washington State University Hybrid Rocket Team

Manufacturing: Propellants

- Cannot find casting tubes with correct dimensions
- Need to make our own
- Procedure based on Fintels.com (amateur hybrid rocketeur)
 - Wrap Kraft Paper around Form
 - Spiral Wrap Glued Paper Strips
 - Trim, Dry, and Coat with Sodium
 Silicate final dimensions: 12" H x
 3.5" OD
 - Casting Propellants
 - Wrap in EDPM (thermal liner)
 - Wrap in Foil Tape

Additional Manufacturing

Immediately:

Date

• Injector

04/08

• Couplers

04/14

• Graphite Nozzle

04/16

• Casting the Fuel Grain

04/08

Soon:

Oxidizer Flight Tank

Washington State University Hybrid Rocket Team

Nose Cone

Thank You

