Fluid Propellant Fundamentals

Kevin Cavender, Franco Spadoni, Mario Reillo, Zachary Hein, Matt Will, David Estrada

The "Dream" Design Liquid Rocket Engine

Major Design Considerations

- Heat Transfer
- Thrust/Weight
- System Level Performance
- Reliability and Safety
- Feasibility in Manufacturing

Major Design Considerations

Table 1-3 Actual ranges of liquid-propellant rocket engine parameters.

Gas temperature T, R [*] 4000 to 7000
Nozzle stagnation pressure Pcns, psia 10-2500
Molecular weight M
Gas constant R
Gas flow Mach number M 0 to 4.5
Specific heat ratio γ 1.13 to 1.66
Nozzle expansion area ratio ε
Nozzle contraction area ratio ec 1.3 to 6
Thrust coefficient Cf 1.3 to 2.0
Characteristic velocity c*, ft/s
Effective exhaust velocity c, ft/s 4000-12,000
Specific impulse (vacuum) I _{S, S} 150-480

Huzel, Dieter, and David Huang. "Introduction." *Modern Engineering for Design of Liquid-Propellant Rocket Engines*. Vol. 147. Washington D.C.: AIAA, 1992. 7-22. Print.

Propellants

Types of fuel systems

- Monopropellent
- Bipropellent

Types of Propellants

- Cold gas
- Cryogenic
- Storable
- Gelled

Mixture Characteristics

$$r = \frac{m_{oxidizer}}{\dot{m}_{fuel}}$$
$$\dot{m} = \dot{m}_{oxidizer} + \dot{m}_{fuel} = \frac{F}{c}$$

•

$$v_2 = \sqrt{\frac{2k}{k-1} \frac{R'T_1}{\mathfrak{M}} \left[1 - \left(\frac{p_2}{p_1}\right)^{\frac{k-1}{k}}\right]}$$

FIGURE 5–1. Calculated performance analysis of liquid oxygen and hydrocarbon fuel as a function of mixture ratio.

Propellent Hazards

- Corrosion
- Explosion
- Fire
- Toxicity
- Material Compatibility

Physical Properties

- Freezing Point
- Specific Gravity
- Stability
- Specific Heat
- Thermal Conductivity
- Vapor Pressure
- Viscosity
- Hypergolic

Feed Systems

- Turbopump
- Pressurized
- Low Pressure Tanks
- High Pressure Tanks

Fuel

tank

🐼 Valve

Tank Layouts

- Multiple Tanks
- CG concerns

Fuel orientation inside tanks

- Sloshing
- Zero-G, Side Acceleration
- Vortexing
- Expulsion Efficiency

TurboPumps

GG) **

Thrust

Oxidizer

œ

Oxidizer

Pump

Fig. 2-9 Basic cycles for pump-fed liquid-propellant engines.

Huzel, Dieter, and David Huang. "Introduction." Modern Engineering for Design of Liquid-Propellant Rocket Engines. Vol. 147. Washington D.C.: AIAA, 1992. 35. Print.

Gas Pressure

- •High pressure gas
- •Simple
- •Control propellant discharge
- Reliable
- •Elements: tank, stating valve, pressure regulator, propellant and feed line

Components of feed system

•Draining provisions,

check valves,

filters, etc.

Disadvantages of gas feed systems

- limits in combustion chamber pressure
- thicker and heavier tanks
- used in higher stages
- freeze a propellant
- decrease tank pressures
- damage components not designed for low temperature

Features

- •Enhance safety
- Provide control
- •Enhance reliability
- •Provide for reusability
- •Enable effective propellant utilization

Comparing types of pressurized gas

Regulated pressure

- •Stays constant
- •Needs more components
- •Constant trust, Is, and r
- •Better control mixture
- •Complex, shorter burning time

Blowdown

•Decreases as propellant is consumed

- •Large volume (heavier)
- •Simpler system
- Thrust decreases
- •Higher residue
- •Lower Is at the end of burning time

apollo lunar module

AJ-10

Space Shulle Olvis/RUS Fud

Injectors

Type of Injectors:

- 1. Doublet impinging stream pattern
- 2. Self-impinging stream pattern
- 3. Shower head stream pattern
- 4. Premixing type
- 5. Splash plate pattern
- Things to consider for our design:
- Fuel ratios
- Velocity of fuel

Combustion Chamber

Definition: A CC is that part of an internal combustion engine in which the fuel/air mix is burned.

Figure 1.4 <u>http://www.braeunig.us/space/pics/fig1-04.gif</u>

Combustion Chamber

Things need consideration:

- 1. Volume and Size
- 2. Propellant Combination
- 3. Chamber Pressure
- 4. Nozzle area ratio
- 5. Feed system, using pumps or pressurized tanks
- 6. Thrust level

Nozzle

Nozzle Inlet Nozzle Throat Area

Things to consider: Ideal Nozzle Theory

Fig. 1-9 Gas flow within liquid-propellant-rocket thrust chamber.

Huzel, Dieter, and David Huang. "Introduction." *Modern Engineering for Design of Liquid-Propellant Rocket Engines*. Vol. 147. Washington D.C.: AIAA, 1992. 7-22. Print.

Nozzle

Real world Rocket Engine Melin Specs: 654-716 kilonewtons of thrust Thrust to weight 150+ 9 Merlin Engines currently on Falcon 9

Spacex Merlin Engine

Zachary Hein

VALVES, LINES, & ENGINE SUPPORT STRUCTURE

Intro to Valves & Lines

Valves

Control the flow of fluids

Lines

Transport fluids to components

Valves and lines need to be reliable, lightweight, leak-proof, and able to withstand significant vibrations and loud noises.

Valves and lines should be tested for leaks and performance prior to use.

Types of Valves

Isolation Valves

• Isolate a portion of the propulsion system when shut

Latch Valves

- Briefly require power to open or close
- Once open or closed, no power is needed

Burst Diaphragm

- · Circular disk that blocks a line
- Designed to burst at certain pressures.

Pressure Regulators

- regulate discharge pressure
- Use piston, diaphragm, or electromagnet to throttle flow

Pressure Regulator

Isolation Valve

Latch Valve

Burst Diaphragm

□ Gasket compatibility with corrosive fluids

Lines

Material

Metal

Connections

• Fittings or Welds

Flexibility

- Necessary for gimballed thrust chambers
- Probably not needed for our designs

Durability

• Withstand Vibrations and thermal expansion

Line Filters

• To prevent particles and debris (from burst diaphragm/other) from blocking valves or injection holes

Engine Support Structure

Support Structure

- Transmits the thrust force to the vehicle
- Many forms of support structures
- In large engines the thrust chamber is used for the support structure
- Turbo pump, control boxes, or gimbal actuators are attached to it

Our Structure

- Most likely welded skeletal structure and sheet metal assembly
- All components are mounted directly to the skeletal structure
- Sheet metal will enclose all components

Rocket Support Frame Example