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Thrust: 50,000 Ibf + 150,000Ibf
Weight: 1,000 Ibm + 3500 Ibm
Isp: 450 + 800 sec

Length: 75 + 200 in.

Preliminary Design



Major Design Considerations

Heat Transfer
Thrust/Weight

System Level Performance
Reliability and Safety
Feasibility in Manufacturing

exhaust at 1000 K, 3 kPa, 4.4 kma"s
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Major Design Considerations

Table 1-3 Actual ranges of liquid-propellant
rocket engine parameters.

oxidizer
turbopurnp

Gas temperature T, R ... .. ... .. ... 4000 to 7000 1

Nozzle stagnation pressure Pcps psia. .. . .. 10-2500 e 2

Molecular weight M. ... .. ... ... .. .. 21030 I

Gas constant R . e 51.5t0 772 |7 s

Gas flow Mach number M . . . ... ....... 0w 4s I

Specific heatratioy . . ............... 1.13 1o 1.66 | =g o0y

Nozzle expansion area ratio € . . . .. ... .. 3.5 o 100 s gg combustion
Nozzle contraction area ratio €c. . ... . . . . 13t06 ¥ T
Thrust coefficent Cf . ... ... .. e 131020

Characteristic velocity ¢*, ft/s . .. .. .. .. . 3000-8000

Effective exhaust velocity ¢, ft/s . . . .. .. 4000-12 000

Specific impulse (vacuum) I 5........ ... 150-480

Huzel, Dieter, and David Huang. "Introduction.” Modern Engineering for Design of exhaust at 1000 K,akpa,“km;S
Liquid-Propellant Rocket Engines. Vol. 147. Washington D.C.: AIAA, 1992. 7-22. Print. * m“jg hydrogan ok —"



Propellants

Types of fuel systems
e Monopropellent

e Bipropellent
Types of Propellants
e Cold gas

e Cryogenic

e Storable

o Gelled

T ity -3
N A S e =
B S T ——
| T TS
\r >
2
[
!
i
| ~';{.. \
| s
=
'-“..:
3 37 o
{3 ’
I
1.
3i
‘4 AL |
’P\
Py
y
'



Mixture Characteristics
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FIGURE 5-1. Calculated performance analysis of liquid oxygen and hydrocarbon fuel
as a function of mixture ratio.



Propellent Hazards

Corrosion

Explosion

Fire

Toxicity

Material Compatibility




Physical Properties

Freezing Point
Specific Gravity
Stability

Specific Heat
Thermal Conductivity
Vapor Pressure
Viscosity

Hypergolic




Feed Systems

Turbopump )
Pressurized Yo o Q \Q
Low Pressure Tanks
High Pressure Tanks

— Gaz ]
0{ generator Walve Walve

Thrust chamber Thrust chamber

[a] Pump-fied rocket [b] Pressure-fed rocket



Tank Layouts

3 Oxidizer

e Multiple Tanks
e CG concerns

Spherical tanks Tandem tanks, Tandem tanks Concentric tanks Multi-tank

external piping with common
bulkhead,

internal piping



Fuel orientation inside tanks

e Sloshing

e Zero-G, Side
Acceleration

e \ortexing

e Expulsion Efficiency




TurboPumps
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Fig. 2-9 Basic cycles for pump-ted liquid-propellant engines.
Huzel, Dieter, and David Huang. "Introduction.” Modern Engineering for Design of Liquid-Propellant Rocket
Engines. Vol. 147. Washington D.C.: AIAA, 1992. 35. Print.



Gas Pressure

. Fuel Tank Oxidizer Tank
*High pressure gas O
OS|mp|e EonieiNralvee ® :;Zssurized
«Control propellant discharge i Q

*Reliable

Elements: tank, stating valve,

Heat exchanger

pressure regulator, propellant

and feed line

Nozzle



Components of feed system

*Draining provisions,

check valves,

filters, etc.

vent '\ vent
valve

High pressure
gas valve
(remote control)

Fuel
tank

- (remote control)

s
iia Wi
additional ———+~ ¢
thrust P Rocket thrust chamber



Disadvantages of gas feed systems

limits in combustion chamber pressure
thicker and heavier tanks :
used in higher stages
freeze a propellant
decrease tank pressures b
damage components not designed for low temperature




Features

Enhance safety
*Provide control
Enhance reliability
*Provide for reusability

*Enable effective propellant utilization



Comparing types of pressurized gas

Regulated pressure
*Stays constant
*Needs more components

Constant trust, Is, and r

Complex, shorter burning time

Blowdown

*Decreases as propellant is
consumed

Large volume (heavier)
*Thrust decreases
*Higher residue

Lower |s at the end of burning time
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Injection holes
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Type of Injectors:
1. Doublet impinging stream pattern
2. Self-impinging stream pattern
3. Shower head stream pattern
4. Premixing type
5. Splash plate pattern
Things to consider for our design:
Fuel ratios
Velocity of fuel



Combustion Chamber

Definition: A CC is that part of an internal combustion
engine in which the fuel/air mix is burned.
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Figure 1.4
http://www.braeunig.us/space/pics/fig1-04.qgif
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Combustion Chamber

Things need consideration:

. Volume and Size

Propellant Combination

. Chamber Pressure

Nozzle area ratio

Feed system, using pumps or pressurized tanks
. Thrust level

oD WNER



Nozzle

Nozzle Inlet
Nozzle Throat Area

Things to consider:
|Ideal Nozzle Theory
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Fig. 1-9 Gas flow within liquid-propellant-rocket
thrust chamber.
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Huzel, Dieter, and David Huang. "Introduction."” Modern Engineering for Design of
Liquid-Propellant Rocket Engines. Vol. 147. Washington D.C.: AIAA, 1992. 7-22. Print.



Nozzle

Real world Rocket Engine
Melin Specs:

654-716 kilonewtons of thrust
Thrust to weight 150+

9 Merlin Engines currently on
Falcon 9

Spacex Merlin Engine



Zachary Hein

VALVES, LINES, & ENGINE SUPPORT STRUCTURE
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Intro to Valves & Lines

Valves
Control the flow of fluids
Lines

Transport fluids to components

Valves and lines need to be reliable, lightweight, leak-proof, and able to
withstand significant vibrations and loud noises.

Valves and lines should be tested for leaks and performance prior to use.



Types of Valves

Isolation Valves
Isolate a portion of the propulsion system when shut
Latch Valves
Briefly require power to open or close
Once open or closed, no power is needed
Burst Diaphragm
Circular disk that blocks a line
Designed to burst at certain pressures.
Pressure Regulators
regulate discharge pressure
Use piston, diaphragm, or electromagnet to throttle flow



Isolation Valve Latch Valve

Pressure Regulator

Burst Diaphragm



Gaskets

1 Gasket compatibility with corrosive fluids



Lines

Material

* Metal

Connections

» Fittings or Welds

Flexibility

» Necessary for gimballed thrust chambers

» Probably not needed for our designs
Durability

* Withstand Vibrations and thermal expansion
Line Filters

« To prevent particles and debris (from burst diaphragm/other) from blocking
valves or injection holes



Engine Support Structure

Support Structure

« Transmits the thrust force to the vehicle

« Many forms of support structures

* In large engines the thrust chamber is used for the support structure
« Turbo pump, control boxes, or gimbal actuators are attached to it

Our Structure

* Most likely welded skeletal structure and sheet metal assembly
« All components are mounted directly to the skeletal structure

* Sheet metal will enclose all components



Rocket Support Frame Example



