Using VBA to Calling a Sub Procedure inside Excel - Featherman©
There are lots of ways to connect to the data you need, some more laborious than others. To date we have connected Excel, Tableau & SSRS to datasets, or created the dataset inside Tableau and SSRS with a SQL Query or the query builder. The SSIS trick of having an empty table filled with compiled data (provided by queries), then using the table as the datasource for reports and dashboards is also good trick. Our original methodology was to use a SQL query to retrieve compiled data into memory and then copy/paste into Excel files. But how else can we get data into Excel for further processing or to serve as the datasource for the workbook?

Soon we will foray into PowerBI which uses PowerPivot to build a data model inside Excel (in essence bloating your Excel files to megabyte size and having yet another copy of data to keep track of and ensure the data inside is refreshed). If you are the lucky owner however of a SQL stored procedure that uses the inner joins, etc. that builds the dataset that retrieves and formats the data you need to analyze (with your pivot tables, pivot charts or Powerview reports) you can access the dataset that the stored procedure builds in a couple of ways;

1) turn the stored procedure into a view and connect your Excel spreadsheet to the view.
2) use VBA Excel’s programming language VBA to run the stored procedure inside an Excel module.
You can also run a query from Excel, you don’t need to have the query saved into a stored procedure.
Each method above is superior in that DBA’s or at least well-trained database professionals create the SQL queries, typically checking and testing results and treating the stored procedure or query as an asset in the library of ETL queries. This document shows how to use VBA to run the stored procedure.
The first thing you need to do is make sure you can see the developer tools in Excel, so click on File |Options | Customize Ribbon to activate the developer tools tab.

[image:]

Next click on the developer tab and then on the first icon, for Visual Basic, next click on Insert | Module. Finally copy and paste the code below into the module, modifying the code to specify your database, user ID, password, and stored procedure name.
[image:]
[image:]
 Next select Tool | References and select the newest version of Microsoft ActiveX Data Objects Library. We will use ADODB object in the code, so this set of classes needs to be activated. (Presumably a lot happens in the background so that we have very few lines of code to run.
[image:]
Demonstration #1 – Here we will run a simple SQL query from an Excel VBA procedure. Select Insert | module and copy and paste the code from the next page into your new module and press the green triangle run button, next press the Excel icon to return to the spreadsheet you should have data! After you know the procedure works, you can add a button to the form and connect the code to the button. This is what is what your module should look like.
[image:]

Explanation of code: This is the simplest demonstration of bringing data into Excel. The only simpler method to pull data is to connect to a view (which is a stored procedure).
	Sub GetData()

 Dim con As New ADODB.Connection
 Dim rs As New ADODB.Recordset

 con.Open "Provider=SQLNCLI11;Server=cb-ot-devst03.ad.wsu.edu; Database=Featherman_Analytics;User Id=mfstudent; Password=BIanalyst"

 rs.Open "Select * FROM featherman.Sales", con

 ActiveSheet.Range("A4").CopyFromRecordset rs

 con.Close
End Sub
	A sub procedure is a code block. The code between the sub and end sub is run whenever the GetData procedure in invoked.

First we create a connection to the database, and a recordset which will hold the data retrieved from the database.

Next we open the connection supplying the database connectivity information which includes the server name, the database, and the userID and password.

Next we open the recordset and run the SQL statement over the specified connection, in effect stuffing the retrieved data into the recordset.

Next we copy the recodset into the active spreadsheet tab starting at cell A4, and finish by closing the connection.

[image:]After you run the procedure by clicking the green button, you can insert a button onto the form then you can assign the procedure to the button. If the assign macro screen below does not display, then right click the button and select Assign macro (also change the text of the button)

[image:]

A downfall of the technique (so far) is that the column headings are not automagically copied to excel when the procedure is run.
Demonstration #2 – To recap, if you have a DBA that makes a great SQL query for you and sends a .sql file to you or just the SQL text, you can drop the query it into an excel VBA procedure (if Excel is your tool of choice). You can perhaps sense that it is not very far of a stretch for an analyst to build a file with many buttons on it, each with a special purpose of bringing in a dataset for further analysis. Below is such an example, two buttons each hard coded to bring a special dataset into the form for further analysis and charting. Lets look at a coding trick though to shorten up the lines of code.

[image:]

	Public con As New ADODB.Connection
Public rs As New ADODB.Recordset
Public Const str As String = "Provider=SQLNCLI11;Server=cb-ot-devst03.ad.wsu.edu; Database=Featherman_Analytics;User Id=mfstudent; Password=BIanalyst"

 Sub GetData()
 con.Open str
 rs.Open "Select * FROM featherman.Sales WHERE Year = 2007
 AND Region = 'East'", con

 ActiveSheet.Range("A4").CopyFromRecordset rs
 con.Close
End Sub

 Sub GetData2()
 con.Open str
 rs.Open "Select * FROM featherman.Sales WHERE Year = 2008
 AND Region = 'West'", con

 ActiveSheet.Range("A4").CopyFromRecordset rs
 con.Close
End Sub
	Just like in C# and VB.Net programming in visual Studio, you have the concept of Public objects that many sub procedures can each use.

Here we really do not need to create the same connection and recordset and connection string over and over for each procedure.

So if you use the constructor Public rather than dim, then the object can be used in all of the sub procedures. So the objects are global to the module, rather than local to the procedure.

Other processing must be local to the procedure as shown

Demonstration #3 – this procedure uses a VBA procedure in a module to call a simple SQL stored procedure (not parameterized). This is similar to connecting to a SQL view which is a saved query. Demonstration #3 uses VBA to send parameter values to a parameterized stored procedure. Here is what the output looks like. The explanation of the code is below. So far the code is run from the module page, not from a button click on the form.
[image:]
	Sub ConnectionTOSP()

Dim con As New ADODB.Connection
Dim rs As New ADODB.Recordset
Dim cmd As New ADODB.Command

con.Open "Provider=SQLNCLI11;Server=cb-ot-devst03.ad.wsu.edu; Database=yourdatabase ;
User Id=yourUserID; Password= your password”

With cmd
 .ActiveConnection = con
 .CommandType = adCmdStoredProc
 .CommandText = "spCustomerMetrics"
End With

 Set rs = cmd.Execute
 Range("A3").CopyFromRecordset rs

con.Close

Set con = Nothing
Set cmd = Nothing

End Sub
	The entire code is here and is placed in this table for easy copying into a module that you create in your Excel file. Be sure to save your excel file as a macro-enabled Excel file.

ADO is a set of classes called Active Data Objects that are used to connect to databases and fire off SQL commands (yes this means you can use Excel for insert, update and delete records transactions – which is probably better performed in a webpage, but many people wish for this functionality).

The Visual Studio version of these data connection objects is called ADO.NET

The typical objects are connections, commands, and recordsets or tables. Here commands are new. Commands can run SQL text typed into the module or they can refer to a stored procedure. Notice the commandType is stored procedure and the command text is the name of the stored procedure.

This is a procedure that retrieves compiled data into an excel range starting at cell A3

This code above is very simple for the analyst to use and run, just make your command, connection and recordset. Tell the command to run a stored procedure of specified name, then execute the command saving the results into a recordset that is copied into the worksheet. This procedure is very similar to ASP.NET webpages and use of gridviews and datatables which are filled with data and displayed.

The main difference of course is that you are using VBA inside Excel, and you and easily build charts and more analytics in excel.
	
Sub ConnectionTOSP()

Dim con As New ADODB.Connection
Dim rs As New ADODB.Recordset
Dim cmd As New ADODB.Command

con.Open "Provider=SQLNCLI11;Server=cb-ot-devst03.ad.wsu.edu; Database=yourdatabase ;
User Id=yourUserID; Password= your password”

	Here the procedure is explained line by line.

First a procedure is used to package up lines of code which are in essence instructions to the computer software. A later example will use a button on the form and assign code to the button1_click event for that button on the form, in essence running the code whenever the button is clicked.

We dimension (create in memory) a connection to our SQL Server database. Next we create a recordset that will hold a set of retrieved database records (this is akin to a table)

Next we create a command which we will use to fire off the SQL stored procedure. Finally we open the connection to the database

	

With cmd
 .ActiveConnection = con
 .CommandType = adCmdStoredProc
 .CommandText = "spCustomerMetrics"
End With

	We use a With end with to organize all the properties that need to be set for the same object.

The command will run the stored procedure so we start by telling it what connection to run on (which in turn specifies the database and server). We next specify the command type as stored procedure, and provide the name of the stored procedure – notice it is in quotes as it treated as a string.

	Set rs = cmd.Execute

 Range("A3").CopyFromRecordset rs

	Here is where the action occurs.

The assignment operator (=) works from right to left so the cmd.execute operation executes the stored procedure assigning the output from that operation (a bunch of compiled data rows) to the in-memory data container recordset that we created.

Next we copy the data in memory to a range that starts in cell A3 on the current spreadsheet.

	con.Close

Set con = Nothing
Set cmd = Nothing

End Sub

	
Now we do memory management we close the connection because SQL Server license are paid for by the number of concurrent users, if a connection to the database remains open then it can’t be used by another individual.

We reset the command and connection freeing up memory for other operations.

Demonstration #4 Ok. But what about connecting the code to a button click event or passing parameter values into the stored procedure? Read on brave data analysts! As you can see there is a button on the form which is next to a cell that is shaded to signify that you should type in data there, the Insert Comment command is nice in that it’s easy to give the program user some instructions in a pop-up manner. Go ahead and create a new file, save it as a macro-enable workbook, and add the button and shaded cell. We will simply filter the prior query.
[image:]
	Sub Button3_Click()

'be sure to use menu command Tools | Reference | to add in the Microsoft ActiveX Data Objects Libray (the highest version, currently 6.1?)

'here we will open a connection, use a command to run a called SQL stored procedure, bringing the data into a recordset (literally a set of records) on the worksheet

Dim con As New ADODB.Connection
Dim cmd As New ADODB.Command
Dim rs As New ADODB.Recordset
Dim WSP1 As Worksheet

' Remove any values in the cells where we want to put our Stored Procedure's results.
Dim rngRange As Range
Set rngRange = Range(Cells(4, 1), Cells(Rows.Count, 1)).EntireRow
rngRange.ClearContents
' Log into our SQL Server, and run the Stored Procedure
con.Open "Provider=SQLNCLI11;Server=cb-ot-devst03.ad.wsu.edu; Database=your database; User Id=yourID; Password=your password”

With cmd
'tell the command upon which connection and database to operate, and that that it will be running a delux stored procedure
 .ActiveConnection = con
 .CommandType = adCmdStoredProc
 .CommandText = "spCustomerMetricsParameterized"

 ' Add the parameter to the Stored Procedure - the name MUST match the variable name in your Stored procedure (Parameter types can be adVarChar,adDate,adInteger)

 .Parameters.Append cmd.CreateParameter("@strState", adVarChar, adParamInput, 10, Range("D2").Text)

 Set rs = .Execute(, , adCmdStoredProc)
End With

' Copy the results to cell D1 on the first Worksheet
Set WSP1 = Worksheets(1)
WSP1.Activate
If rs.EOF = False Then WSP1.Cells(4, 1).CopyFromRecordset rs

‘the rest is cleanup
rs.Close
con.Close
Set rs = Nothing
Set cmd = Nothing
Set con = Nothing

End Sub
	Notice that the procedure is called button3_click – this means that the code will run in response to that event – the button being clicked.

We again create the connection, command and recordset.

We also create a reference to the worksheet, so that we can interact with the worksheet.

The next set of lines declare a range which will be used to display the data. The range starts at (4,1) which is row 4 and column 1 (column A).

Next we activate the connection and set up the command. The new line is very important in that it adds a parameter to the command. Notice that the parameter has the same EXACT name as the variable created in the stored procedure (please verify below).

Note that the value is passed in from Cell D2.

Next the results of the command being run is assigned to the recordset.

The recordset is copied into a range on the first worksheet tab, starting at cell (4,1) i.e. D1

Finally all the objects are removed from memory.

	USE [Featherman_Analytics]
GO
CREATE PROCEDURE [your database owner].[spCustomerMetricsParameterized]
@strState as char(2)
AS
BEGIN
SELECT *
FROM [Featherman_Analytics].[featherman].[CustomerMetricsSSIS]
 WHERE [State] = @strState
 END
	Here is the stored procedure. While it is a very simple query, for this demonstration, the query can actually be quite complex.

[bookmark: _GoBack][image:]We can make a dropdownlist using the Data | Data Validation option so that you can select a state then press the button.

[image:]
Set the Range for the input control to the range of options (sorry no idea about multi-select at this point).

A lot more can be done with VBA, I personally hope you take a deeper look at ASP.NET webpages which also draw from the ADO.NET set of classes and functionality.
10

image5.png
‘48 File Edit View Insert Format Debug Run Tools Add-lns Window Help

EE-E a9 » oo EFY @5 coll

[(General) -

Sub GetData()

Dim con As New ADODB.Connection
Dim rs As New ADODB.Recordset

con.Open "Provider=SQLNCLI1l1;Server=cb-ot-devst03.ad.wsu.edu; Database=Featherman Analytics;User Id=mfstudent; Password=BIanalyst"
rs.Open "Select * FROM featherman.Sales WHERE Year = 2007 AND Region = 'East'", con

ActiveSheet.Range ("A4") .CopyFromRecordset rs
con.Close

End Sub

image6.png
H 9 2 & vbatest - Excel DRAWING TOOLS ?H - X
FILE HOME INSERT = PAGE LAYOUT FORMULAS DATA Developer REVIEW VIEW Lload Test POWER QUERY ACROBAT = POWERPIVOT TEAM FORMAT Featherman, Mauricio ~ H

Q9 = ecord Macro o] Q ﬁf % Pfoperlies =) V:xap Pr.opepmei \Empo: Ea'
Visual Macros 1 Use Reltive References. 6 com nsert Design 0 V1o COUE g 1 PPN FadS RO cument
Basic A\ Macro Security Add-ns | v | Mode (3] Run Dialog [EtRefresh Data Panel
Code Add-Ins e (@ XML Modify ~
Button2 - i fe VIEIE © v
[Aa B Gl FA TR
A B C D a Button (Form Control) G H I J K L M N o P Q R -
1
5 =] V] EB bl &
3 FeoADEN
4 1 24 25000 6/13/2007 East TRUE 2007
5 7 12 1568 5/18/2007 East TRUE 2007
6 8 3 7500 6/24/2007 East FALSE 2007
7 9 15 25000 4/13/2007 East TRUE 2007
8 10 4 9000 2/13/2007 East TRUE 2007
9 14 8 1500 9/11/2007 East TRUE 2007
10 53 7 4545 3/9/2007 East FALSE 2007
1 56 8 6467 3/13/2007 East TRUE 2007
12 59 7 4967 3/19/2007 East FALSE 2007
13 61 4 25000 3/19/2007 East FALSE 2007
14 67 24 25000 6/13/2007 East TRUE 2007
15 68 10 11110 3/27/2007 East FALSE 2007
16 98 7 3500 7/12/2007 East FALSE 2007
17 101 10 24005 9/12/2007 East FALSE 2007
18 102 2 250 9/12/2007 East FALSE 2007
19 105 12 25005 8/9/2007 East FALSE 2007
20 106 10 21000 8/13/2007 East FALSE 2007
21 107 3 250 9/12/2007 East FALSE 2007 |Button 1
22 108 4 3000 9/13/2007 East FALSE 2007
23 113 7 2500 8/3/2007 East FALSE 2007 -
Sheet1 ® K »

M ——&+——+ 100%

- S 7:32 PM

3/7/2016

image7.png
H o9 &

ecord Macro

N
¥)

Visual Macros

(Fd Use Relative References

o]

— .
[.)
Add-Ins COM Insert Design ®

Basic A Macro Security Add-Ins Mode [Run Dialog
Code Add-Ins Controls

Button 2 - f

A B C D F
; Pull East Sales for 2007 |
3
4 1 24 25000 6/13/2007 East TRUE
5 7 12 1568 5/18/2007 East TRUE
6 8 3 7500 6/24/2007 East FALSE
7 9 15 25000 4/13/2007 East TRUE
8 10 4 9000 2/13/2007 East TRUE
9 14 8 1500 9/11/2007 East TRUE
10 53 7 4545 3/9/2007 East FALSE
11 56 8 6467 3/13/2007 East TRUE
12 59 7 4967 3/19/2007 East FALSE
13 61 4 25000 3/19/2007 East FALSE
14 67 24 25000 6/13/2007 East TRUE
15 68 10 11110 3/27/2007 East FALSE
16 98 7 3500 7/12/2007 East FALSE
17 101 10 24005 9/12/2007 East FALSE
18 102 2 250 9/12/2007 East FALSE
19 105 12 25005 8/9/2007 East FALSE
20 106 10 21000 8/13/2007 East FALSE
21 107 3 250 9/12/2007 East FALSE
22 108 4 3000 9/13/2007 East FALSE
23 113 7 2500 8/3/2007 East FALSE

Macro name:

GetData

Edit

Macros in:

Description

All Open Workbooks

Record.

DRAWING TOOLS

FORMAT Featherman, Mauricio ~ H
~
o P Q R -~

M ———§F—+ 100%
8:37 PM
@ 3/7/2016

image8.png
H S & vbatest - Excel ?H - X
G HOME INSERT ~PAGELAYOUT ~FORMULAS DATA Developer REVIEW VIEW Lload Test POWER QUERY ~ACROBAT ~POWERPIVOT — TEAM Featherman, Mauriciovn

Q9 ecord Macro B =] gimm N/ BProperties B Map Properties [Import D
N d [Use Relative References i ﬂ'{ ‘ﬁ‘ &3 View Code L Expansion Packs [} Export #
Visual Macros Add-Ins COM Insert Design Source Document
Basic A\ Macro Security Add-ns - Mode [3]Run Dialog [EtRefresh Data Panel
Code Add-Ins Controls XML Modify ~
H3 - fe v
A B C D E F G H I J K L M N o P Q R -
; Pull East Sales for 2007 | Pull West Sales for 2008
3 — S —————
4 1 24 25000 6/13/2007 East TRUE 2007
5 7 12 1568 5/18/2007 East TRUE 2007
6 8 3 7500 6/24/2007 East FALSE 2007
7 9 15 25000 4/13/2007 East TRUE 2007
8 10 4 9000 2/13/2007 East TRUE 2007 1118
9 14 8 1500 9/11/2007 East TRUE 2007
10 53 7 4545 3/9/2007 East FALSE 2007
11 56 8 6467 3/13/2007 East TRUE 2007
12 59 7 4967 3/19/2007 East FALSE 2007
13 61 4 25000 3/19/2007 East FALSE 2007
14 67 24 25000 6/13/2007 East TRUE 2007 2648
15 68 10 11110 3/27/2007 East FALSE 2007 5866
16 98 7 3500 7/12/2007 East FALSE 2007
17 101 10 24005 9/12/2007 East FALSE 2007
18 102 2 250 9/12/2007 East FALSE 2007
19 105 12 25005 8/9/2007 East FALSE 2007
20 106 10 21000 8/13/2007 East FALSE 2007
21 107 3 250 9/12/2007 East FALSE 2007
22 108 4 3000 9/13/2007 East FALSE 2007
23 113 7 2500 8/3/2007 East FALSE 2007 -
Sheet1 ® K »

M ——&+——+ 100%

- S 11:07 PM

3/7/2016

image9.png
H o9 & VBA Excel - Excel ?H - X
FILE HOME INSERT = PAGE LAYOUT FORMULAS DATA Developer REVIEW VIEW Lload Test POWER QUERY ACROBAT = POWERPIVOT TEAM Featherman, Mauricio'n

Q9 ecord Macro B =] gimm N/ BProperties B Map Properties [Import D
N d [Use Relative References i ﬂ'{ ‘ﬁ‘ &3 View Code L Expansion Packs [} Export #
Visual Macros Add-Ins COM Insert Design Source Document
Basic A\ Macro Security Add-lns ~ Mode (4 Run Dialog [EtRefresh Data Panel
Code Add-Ins Controls XML Modify ~
G21 R fe v
A B C D E F G H I J K L M N o P Q R -
1
2
3 2 Usain Bolt CA 1012110 180 0.8 Good
4 3 King James NY 599046 109 0.64 Bad
5 4 Serena Williams NY 952014 128 8.7 Top
6 5 Dionne Warwick X 518788 82 0.86 Good
7 7 Davy Boy Smith X 612884 96 0.64 Bad
8 8 Hammerin Hank Aaron GA 880386.5 74 1.29 Top
9 10 Edwin Moses NY 502923.5 44 0.54 Bad
10 11 Smokin' Joe Frazier GA 228658 34 0.91 Good
11 12 Wilt Chamberlain CA 1522412 75 2.21 Top
12 14 Mia Hamm GA 223774 33 1.31 Top
13 15 Bill Walton CA 217600 31 1.31 Top
14 16 Steve Nash CA 341081 33 0.35 Bad
15 17 Marion Jones WA 131714.6 22 0.54 Bad
16 18 Cathy Kline WA 70853.42 17 0.87 Good
17 20 Russell Wilson WA 345411 33 1.05 Top
18 23 Muhammad Ali NY 130065 11 0.75 Good
19 24 Mia Maestra CA 411791 41 0.76 Good
20 | 25 Victor Unda PA 522850 26 0.99 Good
21 26 Sam Smith WA 20000 2

M ——&+——+ 100%

- S 11:40 PM

3/6/2016

image10.png
oS- -8+

tesst - Excel

FILE HOME INSERT = PAGELAYOUT FORMULAS DATA Developer REVIEW VIEW Load Test ~POWER QUERY

1o

PivotTable Recommended Table
PivotTables
Tables

F12 -

Pictures Online

Pictures
lllustrations

fe
C

-
DR gstore
=]

. @My Apps - H Recommended

s 20

PivotChart Power Map
- View -

? e

Charts

Add-ins Charts i Reports Power Map

ACROBAT ~ POWERPIVOT ~ TEAM

Line Column Win/

Sparklines

Loss
Filters

S @

Slicer Timeline Hyperlik Text ~ Header

Links

?

|- F X

Featherman, Mauricio ~ H

Box & Footer
Text

~& 4 - TC Equation ~
=l [Z- Qsymbol

Symbols ~

1

2

3

4 17 Marion Jones
5 18 Cathy Kline

6 20 Russell Wilson
7 26 Sam Smith

8

9

Run SP WA

WA
WA
WA
WA

131714.6
70853.42
345411
20000

]

Featherman,
Mauricio:

Current states are TX,
WA, CA, GA, PA

33 1.05 Top
2

Sheet1 ®

Cell D2 commented by Featherman, Mauricio

M (g || aS

M ———§F—+ 100%

=~

11:50 PM
3/6/2016

image11.png
FE O -3+ Book1 - Excel
HOME INSERT ~PAGELAYOUT FORMULAS DATA Developer REVIEW VIEW Load Test POWERQUERY ACROBAT POWERPIVOT ~TEAM

Do Di 7, Elcomecions gy 7 Y',um ~ ‘; =y - EE

B =L

[yFrom Access

[}

(& From Web - & = properties Yo Reapply
From Other Bxisting ~ Refresh 3| Sort Fiter Textto Flash Remove | Data
[BFom Text Sources~ Connections ~ All~ | it links W Advanced Columns Fill - Duplicates Validation Analysis -
Get External Data Connections Sort & Fiker =/ Data Validation...
AL - S ca E2 Cirdle Invalid Data
[Clear Validation Circles
A 8 c D 3 F G H 1) K L M N o

EIRE

?®E -3 X
Featherman, Mauricio -
*+= [5Data Analysis

-)r erg =R
(= [I= = =S
td T8 8=

Consolidate What-If Relationships Group Ungroup Subtotal

Outline [Analysis -~

COUNT:4

B @ ™

image12.png
H S -4+ Book1 - Excel

G HOME INSERT ~PAGELAYOUT ~FORMULAS ~DATA Developer REVIEW VIEW Lload Test POWER QUERY ~ACROBAT ~ POWERPIVOT — TEAM Featherman, Mauriciovn
From Access & %] Connections ¥ Clear - = A =l — Data Analysis
B 5 0 W@l Y ¥ -5 X B B F =
[From Web - & [Properties 1 YReapply X o e =
From Other Bdsting Refresh ' z| Sort Fitter Textto Flash Remove Data Consolidate What-lf Relationships Group Ungroup Subtotal
[BFrom Text Sources - Connections All~ L Edit Links Y Advanced Colymns Fill Duplicates Validation ~ Analysis ~ - -
Get Ex onnection ij Data Tools Outline) Analysis ~
Al
Settings | InputMessage | Error Alert
Validation criteria
1) K L M N o P Q R S -
_— Allow:
11cA List Ignore blank
2 [GA
= Any value In—cell dropdown
3 X Whole number
4 |wA Decimal
5 Date
6 Time
7 Text length
8 Custom
9
10 Apply these changes to all other cells with the same settings
1
Clear All

COUNT:4

12:41 AM
10/24/2016

image1.png
OWERPIVOT TEAM Featherman, Mauricio ~ H

Generel @E Customize the Ribbon.
Formulas o
X Choose commands from: @ Customize the Ribbon:

Proofing

Custom Tabs and Groups Main Tabs N
Save
Language E Developer (Custom) Main Tabs

v -

Advanced Code Home N o P Q R s

Add-Ins Insert

XML

Quick Access Toolbar Modify Formulas
Data

Add-Ins Custom Groups

Review

Trust Center

Developer (Custom)

Add >>

<< Remove

Add-Ins
POWER VIEW
DESIGN

2

<)] []] [&] K& &)

LAYOUT

New Tab New Group

Customizations: Reset ¥

Import/Export ¥

M -———F——+ 100%

e 11:03 PM

3/6/2016

image2.png
H o9 & VBA Excel - Excel ?H - X
FILE HOME INSERT = PAGE LAYOUT FORMULAS DATA Developer REVIEW VIEW Lload Test POWER QUERY ACROBAT = POWERPIVOT TEAM Featherman, Mauricio'n

Q9 ecord Macro B =] gimm N/ BProperties B Map Properties [Import D
N d [Use Relative References i ﬂ'{ ‘ﬁ‘ &3 View Code L Expansion Packs [} Export #
Visual Macros Add-Ins COM Insert Design Source Document
Basic A\ Macro Security Add-ns - Mode [3]Run Dialog [EtRefresh Data Panel
Code Add-Ins Controls XML Modify ~
A3 -k S| 2 v
A B C D E F G H 1 J K L M N o P Q R s ~
1
27
3 | 2|Usain Bolt CA 1012110 180 0.8 Good
4 3 King Jame: NY 599046 109 0.64 Bad
5 4 Serena WiNY 952014 128 8.7 Top
6 5 Dionne W TX 518788 82 0.86 Good
7 7 Davy Boy {TX 612884 96 0.64 Bad
8 8 Hammerir GA 880386.5 74 1.29 Top
9 10 Edwin Mo NY 502923.5 44 0.54 Bad
10 11 Smokin' JcGA 228658 34 0.91 Good
1 12 Wilt ChamCA 1522412 75 2.21 Top
12 14 Mia HamnGA 223774 33 1.31 Top
13 15 Bill Waltor CA 217600 31 1.31 Top
14 16 Steve NaslCA 341081 33 0.35 Bad
15 17 Marion Jo WA 131714.6 22 0.54 Bad
16 18 Cathy Klinl WA 70853.42 17 0.87 Good
17 20 Russell Wi WA 345411 33 1.05 Top
18 23 Muhamm: NY 130065 11 0.75 Good
19 24 Mia Maes CA 411791 41 0.76 Good
20 25 Victor UncPA 522850 26 0.99 Good
21 26 Sam Smitt WA 20000 2

M ——&+——+ 100%

- S 11:34 PM

3/6/2016

image3.png
‘8 File Edit View | Insert | Format Debug Run Tools Add-Ins Window Help -8 x
ga Procedure... > n B IBEFY (@ 2 cot
& UserForm X| [(General)

% Module

& Class Module 1

File... Ism)

ConnectionTOSP -

|«

EHE5 Modules
2 Module1
w2 RibbonX_Code
- &% VBAProject (VBA Excel.xlsm)
45 Microsoft Excel Objects
Sheet1 (Sheet1)
48 ThisWorkbook

K] D]

Immediate

11:00 PM
3/6/2016

image4.png
& Microsoft Visual Basic for Applications - Excel VBA.xIsm - [Module1 (Code)]
‘#83 File Edit View Insert Format Debug Run Tools Add-ns Window Help

EE-Jd % 2anm9 »ouoE S

'@ n2 col1

Project - VBAProject X| [Ticenera)
i |Ca
&£ atpvbaen.xls (ATPVBAEN.XLI

- &% VBAProject (Excel VBA.xIsm)
Microsoft Excel Objects
EHE5 Modules

2 Module1
w2 RibbonX_Code

- &% VBAProject (VBA Excel.xlsm)
45 Microsoft Excel Objects

Sheet1 (Sheet1)

48 ThisWorkbook

K]

Immediate

|«

Available References:

Visual Basic For Applications
Microsoft Excel 15.0 Object Library
OLE Automation

| Jatpvbaen.xis
[IMicrosoft Forms 2.0 Object Library Priority
[VBAProject
|| AccessibilityCplAdmin 1.0 Type Library
[Acrobat

| Acrobat Access 3.0 Type Library

| Acrobat Distiller

[|Acrobat Scan 1.0 Tvne | ibrarv

<

[ConnectionTOSP

~Microsoft ActiveX Data Objects 6.1 Library
Location: C:\Program Files (x86)\Common Files\System\ado\msado15.dI
Language: Standard

rman

10:35 PM
3/6/2016

